Browsing by Author "Sebald, Walter"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of Interleukin-4Publication . Vaz, Daniela C.; Rodrigues, J. Rui; Sebald, Walter; Dobson, Christopher M.; Brito, Rui M. M.The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfidesin the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solventaccessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14C for C3T-IL4 and 10C for C24T-IL4, when compared toWT-IL4, and the conformational stability, at 25C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.
- Lessons on protein structure from interleukin‐4: All disulfides are not created equalPublication . Vaz, Daniela C.; Rodrigues, J. Rui; Loureiro‐Ferreira, Nuno; Müller, Thomas D.; Sebald, Walter; Redfield, Christina; Brito, Rui M. M.Interleukin-4 (IL-4) is a hematopoietic cytokine composed by a four-helix bundle stabilized by an antiparallel beta-sheet and three disulfide bonds: Cys3-Cys127, Cys24-Cys65, and Cys46-Cys99. IL-4 is involved in several immune responses associated to infection, allergy, autoimmunity, and cancer. Besides its physiological relevance, IL-4 is often used as a “model” for protein design and engineering. Hence, to understand the role of each disulfide in the structure and dynamics of IL-4, we carried out several spectroscopic analyses (circular dichroism [CD], fluorescence, nuclear magnetic resonance [NMR]), and molecular dynamics (MD) simulations on wild-type IL-4 and four IL-4 disulfide mutants. All disulfide mutants showed loss of structure, altered interhelical angles, and looser core packings, showing that all disulfides are relevant for maintaining the overall fold and stability of the four-helix bundle motif, even at very low pH. In the absence of the disulfide connecting both protein termini Cys3-Cys127, C3T-IL4 showed a less packed protein core, loss of secondary structure ( 9%) and fast motions on the sub-nanosecond time scale (lower S2 order parameters and larger τc correlation time), especially at the two protein termini, loops, beginning of helix A and end of helix D. In the absence of Cys24-Cys65, C24T-IL4 presented shorter alpha-helices (14% loss in helical content), altered interhelical angles, less propensity to form the small anti-parallel beta-sheet and increased dynamics. Simultaneously deprived of two disulfides (Cys3-Cys127 and Cys24-Cys65), IL-4 formed a partially folded “molten globule” with high 8-anilino1-naphtalenesulphonic acid-binding affinity and considerable loss of secondary structure ( 50%decrease), as shown by the far UV-CD, NMR, and MD data.