Browsing by Author "Reis, João R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Electronically Reconfigurable FSS-Inspired Transmitarray for 2-D BeamsteeringPublication . Reis, João R.; Caldeirinha, Rafael F. S.; Hammoudeh, Akram; Copner, NigelA novel electronically reconfigurable transmitarray (TA) with 2-D beamsteering capability is presented in this communication. The proposed structure, inspired on frequency selective surfaces loaded with varactor diodes, allows the phase range of each TA element to be individually controlled enabling an automated steering of the main lobe of an original antenna pattern, in both elevation and azimuth planes (2-D beamsteering). This has been demonstrated on a 5 × 5 unit-cell stacked structure with active feeding, coupled to the aperture of a standard gain horn antenna. A complete electromagnetic study using CST Microwave Studio is presented to evaluate and characterize the TA elements and the effect the proposed feeding network has on the structure's behavior. Following initial simulations, a prototype of the active TA has been characterized. Automated antenna beamsteering with ranges up to Az = 28° and El = 26° and 1° of angular resolution, is achieved by means of electromagnetic simulations and validated against experimental results at 5.2 GHz.
- Metamaterial-inspired Flat-Antenna Design for 5G Small-cell Base-Stations Operating at 3.6 GHzPublication . Reis, João R.; Fernandes, Telmo R.; Patrício Carreira Vala, Mário António; Caldeirinha, Rafael F. S.In this paper, a flat-beamsteering antenna for 5G applications is being presented. The antenna, designed to operate at 3.6 GHz (5G new radio (NR) frequency range 1 (FR1) band n78), presents a unique flat form factor which allows easy deployment and low visual impact in 5G dense scenarios. The antenna presents a multi-layer structure where a metamaterial inspired transmitarray enables the two-dimensional (2D) beamsteering, and an array of microstrip patch antennas is utilised as RF source. The use of metamaterials for beamsteering control allows for the reduction of costly and complex phase-shifter networks by using discrete capacitor diodes to control the transmission phase-shifting and subsequently, the direction of the steering. According to simulations, the proposed antenna presents 13.9 dBi of gain, 100 MHz of bandwidth with a maximum steering range of ±20 degrees, achievable in both elevation and azimuth planes, independently.