INESCC-DL - Artigos em Revistas Internacionais
URI permanente para esta coleção:
Navegar
Percorrer INESCC-DL - Artigos em Revistas Internacionais por autor "Alves, Domingos"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Data Integration in the Brazilian Public Health System for Tuberculosis: Use of the Semantic Web to Establish InteroperabilityPublication . Pellison, Felipe Carvalho; Rijo, Rui Pedro Charters Lopes; Lima, Vinicius Costa; Crepaldi, Nathalia Yukie; Bernardi, Filipe Andrade; Galliez, Rafael Mello; Kritski, Afrânio; Abhishek, Kumar; Alves, DomingosBackground: Interoperability of health information systems is a challenge due to the heterogeneity of existing systems at both the technological and semantic levels of their data. The lack of existing data about interoperability disrupts intra-unit and inter-unit medical operations as well as creates challenges in conducting studies on existing data. The goal is to exchange data while providing the same meaning for data from different sources. Objective: To find ways to solve this challenge, this research paper proposes an interoperability solution for the tuberculosis treatment and follow-up scenario in Brazil using Semantic Web technology supported by an ontology. Methods: The entities of the ontology were allocated under the definitions of Basic Formal Ontology. Brazilian tuberculosis applications were tagged with entities from the resulting ontology. Results: An interoperability layer was developed to retrieve data with the same meaning and in a structured way enabling semantic and functional interoperability. Conclusions: Health professionals could use the data gathered from several data sources to enhance the effectiveness of their actions and decisions, as shown in a practical use case to integrate tuberculosis data in the State of São Paulo.
- Development of CART model for prediction of tuberculosis treatment loss to follow up in the state of São Paulo, Brazil: A case–control studyPublication . Yamaguti, Verena Hokino; Alves, Domingos; Rijo, Rui, Rui Pedro Charters Lopes; Miyoshi, Newton Shydeo Brandão; Ruffino-Netto, AntônioBackground: Tuberculosis is the leading cause of infectious disease-related death, surpassing even the immunodeficiency virus. Treatment loss to follow up and irregular medication use contribute to persistent morbidity and mortality. This increases bacillus drug resistance and has a negative impact on disease control. Objective: This study aims to develop a computational model that predicts the loss to follow up treatment in tuberculosis patients, thereby increasing treatment adherence and cure, reducing efforts regarding treatment relapses and decreasing disease spread. Methods: This is a case-controlled study. Included in the data set were 103,846 tuberculosis cases from the state of São Paulo. They were collected using the TBWEB, an information system used as a tuberculosis treatment monitor, containing samples from 2006 to 2016. This set was later resampled into 6 segments with a 1-1 ratio. This ratio was used to avoid any bias during the model construction. Results: The Classification and Regression Trees were used as the prediction model. Training and test sets accounted for 70% in the former and 30% in the latter of the tuberculosis cases. The model displayed an accuracy of 0.76, F-measure of 0.77, sensitivity of 0.80 and specificity of 0.71. The model emphasizes the relationship between several variables that had been identified in previous studies as related to patient cure or loss to follow up treatment in tuberculosis patients. Conclusion: It was possible to construct a predictive model for loss to follow up treatment in tuberculosis patients using Classification and Regression Trees. Although the fact that the ideal predictive ability was not achieved, it seems reasonable to propose the use of Classification and Regression Trees models to predict likelihood of treatment follow up to support healthcare professionals in minimising the loss to follow up.
