ESTG - Mestrado em Ciência de Dados
Permanent URI for this collection
Browse
Browsing ESTG - Mestrado em Ciência de Dados by advisor "Craveiro, Olga Marina Freitas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ANALYSIS OF THE REAL IMPACT OF SOCIAL MEDIA AND ONLINE REPUTATION TO IMPROVE MARKETING STRATEGIES IN A HOTEL CHAINPublication . Berrazueta, Juan Andres Coba; Craveiro, Olga Marina Freitas; Sousa, Márcia Cristina Santos ViegasThe main objective of this research is to design and implement a comprehensive framework that integrates text mining, sentiment analysis, and Business Intelligence (BI) for the analysis of hotel reviews. The study aims to provide hotel managers with a systematic and automated tool capable of transforming unstructured textual data into actionable insights that improve customer satisfaction, enhance online reputation, and support data-driven marketing and operational strategies. This thesis investigates the integration of sentiment analysis, text mining, and BI frameworks as a strategic tool for online reputation management in the hospitality industry. The study combines a systematic literature review, conducted under the PRISMA guidelines, with an empirical project developed according to the CRISP-DM process model. The dataset used comprises all the positive and negative reviews from multiple sources—including Google Reviews, Booking.com, Tripadvisor, and physical surveys—covering five hotels in Portugal during 2023 and 2024. The methodology involved a pipeline of data preparation, including cleaning, deduplication, translation into European Portuguese, normalization, stemming, and lemmatization. Supervised machine learning models, particularly Logistic Regression and Naive Bayes, were implemented and optimized through techniques such as SMOTE and threshold adjustment, demonstrating high accuracy and strong recall for negative comments. Additionally, topic modeling (LDA and NMF) and semantic categorization were applied to extract latent themes and classify reviews into business-relevant categories. Results were operationalized through interactive dashboards in Power BI, which enabled the visualization of satisfaction levels, temporal trends, word frequencies, and category distributions across hotels. These dashboards provided to hotel managers with actionable insights to detect strengths, weaknesses, and seasonal patterns in customer perception. The system was further enhanced with an automated scraping pipeline for Google Reviews, ensuring continuous integration of updated customer feedback. The findings confirm that sentiment analysis and BI tools represent a powerful combination for transforming unstructured textual data into actionable insights. The study demonstrates the feasibility, scalability, and strategic relevance of this approach, while also highlighting limitations related to data availability and semantic overlaps. Ultimately, this work contributes to advancing data-driven decision-making in the hospitality industry.
- Social Media – Grupo LusiavesPublication . Bento, Válter Luís Crespo; Craveiro, Olga Marina FreitasA análise de dados e a Inteligência de Negócio (Business Intelligence) têm vindo a ganhar cada vez mais importância nas organizações, com a tomada de decisões estratégicas. Atualmente, observa-se uma tendência crescente de descentralização do acesso e análise de dados em toda a organização, o que leva a que as empresas reconheçam o Business Intelligence como uma componente estratégica. Neste sentido, este projeto tem como objetivo o desenvolvimento de um sistema de analytics para auxílio à gestão e análise de informação de múltiplas fontes de dados no meio empresarial. De tal modo, para o desenvolvimento deste projeto, foi utilizado como caso de estudo a informação retirada das redes sociais do Grupo Lusiaves, utilizando a plataforma Domo. O projeto segue uma abordagem metodológica baseada no CRISP-DM, comumente utilizada na construção de sistemas de análise de dados. Todo o processo que foi seguido com base na metodologia CRISP-DM foi desenvolvida através da plataforma Domo, desde o processo de recolha e preparação dos dados até ao desenvolvimento de dashboards. Através da análise descritiva e prescritiva dos dados, foi possível comprovar o enorme potencial do Domo como ferramenta de suporte ao Business Intelligence, tanto do ponto de vista económico como no que diz respeito à análise de dados.
