Repository logo
 
Loading...
Thumbnail Image
Publication

Harmonic Analysis on the Einstein Gyrogroup

Use this identifier to reference this record.
Name:Description:Size:Format: 
Harm_Anal_Einstein_gyro_Post_Print.pdf298.12 KBAdobe PDF Download

Advisor(s)

Abstract(s)

In this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of ${\mathbb R}^n, n \in \mathbb{N},$ centered at the origin and with arbitrary radius $t \in \mathbb{R}^+,$ associated to the generalised Laplace-Beltrami operator $$ L_{\sigma,t} = \disp \left( 1 - \frac{\|x\|^2}{t^2} \right) \!\left( \Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2-\kappa)}{4t^2} \right)$$where $\kappa=n+\sigma$ and $\sigma \in {\mathbb R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the $(\sigma,t)$-translation, the $(\sigma,t)$-convo\-lution, the $(\sigma,t)$-spherical Fourier transform, the $(\sigma,t)$-Poisson transform, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.

Description

Keywords

Einstein gyrogroup Generalised Helgason-Fourier transform Spherical functions Hyperbolic convolution Eigenfunctions Laplace-Beltrami-operator

Pedagogical Context

Citation

Ferreira M., Harmonic analysis on the Einstein gyrogroup, J. Geom. Symm. Phys. 35, 2014, 21-60

Research Projects

Research ProjectShow more

Organizational Units

Journal Issue

Publisher

Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences (IBPhBME-BAS)

CC License

Altmetrics