Publicação
3D deformations by means of monogenic functions
| dc.contributor.author | Ferreira, Milton | |
| dc.contributor.author | Morais, João | |
| dc.date.accessioned | 2019-02-06T18:05:42Z | |
| dc.date.available | 2019-02-06T18:05:42Z | |
| dc.date.issued | 2013-04 | |
| dc.description.abstract | In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in an arbitrary ball of the Euclidean space $\mathbb{R}^3$. This quantification may be needed in applications but also appear to be of intrinsic interest. The main tool used is a 3D Fourier series development of monogenic functions in terms of a special set of solid spherical monogenics. Ultimately, we present some examples showing the applicability of our approach. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Ferreira M., and Morais J., 3D deformations by means of monogenic functions, Math. Meth. Appl. Sci., 36(7) (2013), 780-793 | pt_PT |
| dc.identifier.doi | 10.1002/mma.2625 | pt_PT |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.other | 1099-1476 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/3807 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Wiley Online Library | pt_PT |
| dc.relation | Strategic Project - UI 4106 - 2011-2012 | |
| dc.relation.publisherversion | https://onlinelibrary.wiley.com/doi/full/10.1002/mma.2625 | pt_PT |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Quaternion analysis | pt_PT |
| dc.subject | Riesz system | pt_PT |
| dc.subject | Monogenic functions | pt_PT |
| dc.subject | Quasiconformal mappings | pt_PT |
| dc.title | 3D deformations by means of monogenic functions | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Strategic Project - UI 4106 - 2011-2012 | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6820 - DCRRNI ID/PEst-C%2FMAT%2FUI4106%2F2011/PT | |
| oaire.citation.endPage | 793 | pt_PT |
| oaire.citation.issue | 7 | pt_PT |
| oaire.citation.startPage | 780 | pt_PT |
| oaire.citation.title | Mathematical Methods in the Applied Sciences | pt_PT |
| oaire.citation.volume | 36 | pt_PT |
| oaire.fundingStream | 6820 - DCRRNI ID | |
| person.familyName | Ferreira | |
| person.familyName | Morais | |
| person.givenName | Milton | |
| person.givenName | João | |
| person.identifier.ciencia-id | CA19-2009-F26D | |
| person.identifier.ciencia-id | 3614-652A-118E | |
| person.identifier.orcid | 0000-0003-1816-8293 | |
| person.identifier.orcid | 0000-0003-3406-2878 | |
| person.identifier.rid | A-2004-2015 | |
| person.identifier.scopus-author-id | 12144179800 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | b1460cdc-4ced-46c6-a637-68b425d104dc | |
| relation.isAuthorOfPublication | 3bc0f910-a460-461f-863a-1ca701ee597f | |
| relation.isAuthorOfPublication.latestForDiscovery | b1460cdc-4ced-46c6-a637-68b425d104dc | |
| relation.isProjectOfPublication | 9f37d183-d2e8-4bfb-856f-47ce40c20898 | |
| relation.isProjectOfPublication.latestForDiscovery | 9f37d183-d2e8-4bfb-856f-47ce40c20898 |
