Logo do repositório
 
Publicação

AlineaGA - a genetic algorithm with local search optimization for multiple sequence alignment

datacite.subject.fosCiências Naturais::Ciências da Computação e da Informação
datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg07:Energias Renováveis e Acessíveis
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorSilva, Fernando José Mateus da
dc.contributor.authorPérez, Juan Manuel Sánchez
dc.contributor.authorPulido, Juan Antonio Gómez
dc.contributor.authorRodríguez, Miguel A. Vega
dc.date.accessioned2025-12-18T10:21:24Z
dc.date.available2025-12-18T10:21:24Z
dc.date.issued2009-06-30
dc.description.abstractThe alignment and comparison of DNA, RNA and Protein sequences is one of the most common and important tasks in Bioinformatics. However, due to the size and complexity of the search space involved, the search for the best possible alignment for a set of sequences is not trivial. Genetic Algorithms have a predisposition for optimizing general combinatorial problems and therefore are serious candidates for solving multiple sequence alignment tasks. Local search optimization can be used to refine the solutions explored by Genetic Algorithms. We have designed a Genetic Algorithm which incorporates local search for this purpose: AlineaGA. We have tested AlineaGA with representative sequence sets of the globin family. We also compare the achieved results with the results provided by T-COFFEE.eng
dc.identifier.citationda Silva, F.J.M., Sánchez Pérez, J.M., Gómez Pulido, J.A. et al. AlineaGA—a genetic algorithm with local search optimization for multiple sequence alignment. Appl Intell 32, 164–172 (2010). https://doi.org/10.1007/s10489-009-0189-4.
dc.identifier.doi10.1007/s10489-009-0189-4
dc.identifier.eissn1573-7497
dc.identifier.issn0924-669X
dc.identifier.urihttp://hdl.handle.net/10400.8/15145
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Nature
dc.relation.hasversionhttps://link.springer.com/article/10.1007/s10489-009-0189-4
dc.relation.ispartofApplied Intelligence
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMultiple sequence alignments
dc.subjectGenetic algorithms
dc.subjectLocal search
dc.subjectOptimization
dc.subjectHybridization
dc.subjectBioinformatics
dc.titleAlineaGA - a genetic algorithm with local search optimization for multiple sequence alignmenteng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage172
oaire.citation.startPage164
oaire.citation.titleApplied Intelligence
oaire.citation.volume32
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSilva
person.givenNameFernando
person.identifier.ciencia-id9D19-84F9-F1CA
person.identifier.orcid0000-0001-9335-1851
person.identifier.scopus-author-id24402946400
relation.isAuthorOfPublication2db213d9-a071-4f43-9544-1295ebb6ffde
relation.isAuthorOfPublication.latestForDiscovery2db213d9-a071-4f43-9544-1295ebb6ffde

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
AlineaGA-a genetic algorithm with local search optimization for multiple sequence alignment.pdf
Tamanho:
848.55 KB
Formato:
Adobe Portable Document Format
Descrição:
The alignment and comparison of DNA, RNA and Protein sequences is one of the most common and important tasks in Bioinformatics. However, due to the size and complexity of the search space involved, the search for the best possible alignment for a set of sequences is not trivial. Genetic Algorithms have a predisposition for optimizing general combinatorial problems and therefore are serious candidates for solving multiple sequence alignment tasks. Local search optimization can be used to refine the solutions explored by Genetic Algorithms. We have designed a Genetic Algorithm which incorporates local search for this purpose: AlineaGA. We have tested AlineaGA with representative sequence sets of the globin family. We also compare the achieved results with the results provided by T-COFFEE.
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.32 KB
Formato:
Item-specific license agreed upon to submission
Descrição: