Publication
Artificial intelligence applied to the stone manufacturing industry: A systematic literature review
| datacite.subject.fos | Engenharia e Tecnologia | |
| datacite.subject.sdg | 08:Trabalho Digno e Crescimento Económico | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| datacite.subject.sdg | 10:Reduzir as Desigualdades | |
| dc.contributor.author | Santos Silva, Alexandre | |
| dc.contributor.author | Antunes, Carolina | |
| dc.contributor.author | Miragaia, Rolando | |
| dc.contributor.author | Costa, Rogério Luís C. | |
| dc.contributor.author | Silva, Fernando | |
| dc.contributor.author | Ribeiro, José | |
| dc.date.accessioned | 2025-11-05T10:42:59Z | |
| dc.date.available | 2025-11-05T10:42:59Z | |
| dc.date.issued | 2025-12 | |
| dc.description | Article number - 110702 | |
| dc.description.abstract | Natural stone has long been used in construction, as its properties provide functional and visual value, and the natural stone market currently holds significant importance in the global economy. It is important to consider integrating new technologies in the production chain to aid the industry in moving forward, increasing profit margins and reducing wasted material. This article reviews recent trends in using Artificial Intelligence and Machine Learning techniques in the industry between 2017 and 2024, following a methodology for Systematic Literature Reviews in computer science. It was found that extensive research has been conducted on the subject of tile classification, with solid solutions proposed, achieving results that can be considered robust enough for industrial application. Other subjects comprise tasks regarding stone cutting and defect detection, as well as variable prediction, and quarry activity monitoring. Some authors propose solutions to integrate new technologies into the complete production chain. While more research needs to be done on specific subjects, this review provides a solid first step to future research. | eng |
| dc.description.sponsorship | This work is partially funded by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the context of the project UIDB/04524/2020, and under the Scientific Employment Stimulus - CEECINS/00051/2018. The authors also gratefully acknowledge the European Union - Portuguese Recovery and Resilience Plan, Grant Contract number: Sustainable Stone by Portugal, Call: 2021-C05i0101-02—agendas/alianças mobilizadoras para a reindustrialização - PRR, Proposal: C632482988-00467016. | |
| dc.identifier.citation | Silva, Alexandre & Antunes, Carolina & Miragaia, Rolando & Costa, Rogério Luís & Silva, Fernando & Ribeiro, José. (2025). Artificial Intelligence Applied to the Stone Manufacturing Industry: A Systematic Literature Review. 10.2139/ssrn.5188439. | |
| dc.identifier.doi | 10.1016/j.compeleceng.2025.110702 | |
| dc.identifier.issn | 0045-7906 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/14516 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier | |
| dc.relation | Research Center in Informatics and Communications | |
| dc.relation.ispartof | Computers and Electrical Engineering | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Artificial intelligence | |
| dc.subject | Machine learning | |
| dc.subject | Stone industry | |
| dc.subject | Stone manufacturing | |
| dc.subject | Natural stone | |
| dc.subject | Computer vision | |
| dc.title | Artificial intelligence applied to the stone manufacturing industry: A systematic literature review | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Center in Informatics and Communications | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04524%2F2020/PT | |
| oaire.citation.title | Computers and Electrical Engineering | |
| oaire.citation.volume | 128 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Santos Silva | |
| person.familyName | Miragaia | |
| person.familyName | de Carvalho Costa | |
| person.familyName | Silva | |
| person.familyName | Ribeiro | |
| person.givenName | Alexandre | |
| person.givenName | Rolando | |
| person.givenName | Rogério Luís | |
| person.givenName | Fernando | |
| person.givenName | José | |
| person.identifier | 662638 | |
| person.identifier.ciencia-id | C712-E02E-0ED2 | |
| person.identifier.ciencia-id | 7717-9573-0C0F | |
| person.identifier.ciencia-id | 9D19-84F9-F1CA | |
| person.identifier.ciencia-id | 0C1B-5E3F-6830 | |
| person.identifier.orcid | 0009-0005-6975-9714 | |
| person.identifier.orcid | 0000-0003-4213-9302 | |
| person.identifier.orcid | 0000-0003-2306-7585 | |
| person.identifier.orcid | 0000-0001-9335-1851 | |
| person.identifier.orcid | 0000-0003-3019-1330 | |
| person.identifier.rid | GLS-3615-2022 | |
| person.identifier.rid | A-7940-2016 | |
| person.identifier.scopus-author-id | 26422369700 | |
| person.identifier.scopus-author-id | 7801604983 | |
| person.identifier.scopus-author-id | 24402946400 | |
| person.identifier.scopus-author-id | 55947747200 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | 0e95e779-d329-4406-8608-f1a389c4061a | |
| relation.isAuthorOfPublication | c3934650-8cbe-40cd-bb29-31c57baa49e2 | |
| relation.isAuthorOfPublication | 5654d934-3fa0-4afb-9b3b-f2736104924c | |
| relation.isAuthorOfPublication | 2db213d9-a071-4f43-9544-1295ebb6ffde | |
| relation.isAuthorOfPublication | 4ad743c6-5db7-4208-be72-c182c7b0f8ef | |
| relation.isAuthorOfPublication.latestForDiscovery | c3934650-8cbe-40cd-bb29-31c57baa49e2 | |
| relation.isProjectOfPublication | 67435020-fe0d-4b46-be85-59ee3c6138c7 | |
| relation.isProjectOfPublication.latestForDiscovery | 67435020-fe0d-4b46-be85-59ee3c6138c7 |
