Repository logo
 
Publication

Evaluation of AI-based Malware Detection in IoT Network Traffic

dc.contributor.authorPrazeres, Nuno
dc.contributor.authorCosta, Rogério Luís de C.
dc.contributor.authorSantos, Leonel
dc.contributor.authorRabadão, Carlos
dc.date.accessioned2023-03-06T13:46:46Z
dc.date.available2023-03-06T13:46:46Z
dc.date.issued2022
dc.date.updated2023-03-02T15:07:37Z
dc.descriptionArtigo publicado em: Proceedings of the 19th International Conference on Security and Cryptography - SECRYPT, 580-585, ISBN 978-989-758-590-6; ISSN 2184-7711, pages 580-585, 2022. DOI: 10.5220/0011279600003283.pt_PT
dc.descriptionA 19ª Conferência Internacional sobre Segurança e Criptografia, foi realizada nos dias 11-13 de julho, de 2022, em Lisboa, Portugal.
dc.description.abstractInternet of Things (IoT) devices have become day-to-day technologies. They collect and share a large amount of data, including private data, and are an attractive target of potential attackers. On the other hand, machine learning has been used in several contexts to analyze and classify large volumes of data. Hence, using machine learning to classify network traffic data and identify anomalous traffic and potential attacks promises. In this work, we use deep and traditional machine learning to identify anomalous traffic in the IoT-23 dataset, which contains network traffic from real-world equipment. We apply feature selection and encoding techniques and expand the types of networks evaluated to improve existing results from the literature. We compare the performance of algorithms in binary classification, which separates normal from anomalous traffic, and in multiclass classification, which aims to identify the type of attack.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPrazeres, Nuno, Costa, Rogerio Luís de C., Santos, Leonel, and Rabadao, Carlos. ˜ Evaluation of AI-based Malware Detection in IoT Network Traffic. In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 580-585 - DOI: 10.5220/0011279600003283 - ISBN: 978-989- 758-590-6; ISSN: 2184-7711pt_PT
dc.identifier.doihttp://dx.doi.org/10.5220/0011279600003283pt_PT
dc.identifier.isbn978-989-758-590-6
dc.identifier.issn2184-7711
dc.identifier.slugcv-prod-3056330
dc.identifier.urihttp://hdl.handle.net/10400.8/8175
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherScience and Technology Publicationspt_PT
dc.relationUIDB/04524/2020pt_PT
dc.relationCEECI2018/FCTpt_PT
dc.relation.publisherversionhttps://www.scitepress.org/PublicationsDetail.aspx?ID=v02bUYG54IM=&t=1pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectInternet of Thingspt_PT
dc.subjectMachine Learningpt_PT
dc.subjectIntrusion Detection Systemspt_PT
dc.subjectCybersecuritypt_PT
dc.titleEvaluation of AI-based Malware Detection in IoT Network Trafficpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceLisboa, Portugalpt_PT
oaire.citation.endPage585pt_PT
oaire.citation.startPage580pt_PT
oaire.citation.titleProceedings of the 19th International Conference on Security and Cryptographypt_PT
oaire.citation.volume1pt_PT
person.familyNameGonçalves dos Prazeres
person.familyNamede Carvalho Costa
person.familyNameSimões Santos
person.familyNameRabadão
person.givenNameNuno Alexandre
person.givenNameRogério Luís
person.givenNameLeonel Filipe
person.givenNameCarlos
person.identifier.ciencia-id7717-9573-0C0F
person.identifier.ciencia-idC212-374B-3FF1
person.identifier.ciencia-id2C1C-E900-6A57
person.identifier.orcid0000-0003-1760-6220
person.identifier.orcid0000-0003-2306-7585
person.identifier.orcid0000-0002-6883-7996
person.identifier.orcid0000-0001-7332-4397
person.identifier.ridA-7940-2016
person.identifier.ridM-3235-2013
person.identifier.scopus-author-id7801604983
person.identifier.scopus-author-id57203544345
person.identifier.scopus-author-id22433497800
rcaap.cv.cienciaid7717-9573-0C0F | Rogério Luís de Carvalho Costa
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationcb0ac77a-dc59-4d22-a29a-48558f53dc33
relation.isAuthorOfPublication5654d934-3fa0-4afb-9b3b-f2736104924c
relation.isAuthorOfPublication68de522f-fc54-440b-83c2-7374dc26f0b3
relation.isAuthorOfPublication99f438ca-9099-4e7e-91ea-1a5cbab7a1ab
relation.isAuthorOfPublication.latestForDiscovery5654d934-3fa0-4afb-9b3b-f2736104924c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Secrypt_2022_Versao_Repositorio.pdf
Size:
197.99 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.33 KB
Format:
Item-specific license agreed upon to submission
Description: