Publication
Evaluation of AI-based Malware Detection in IoT Network Traffic
dc.contributor.author | Prazeres, Nuno | |
dc.contributor.author | Costa, Rogério Luís de C. | |
dc.contributor.author | Santos, Leonel | |
dc.contributor.author | Rabadão, Carlos | |
dc.date.accessioned | 2023-03-06T13:46:46Z | |
dc.date.available | 2023-03-06T13:46:46Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2023-03-02T15:07:37Z | |
dc.description | Artigo publicado em: Proceedings of the 19th International Conference on Security and Cryptography - SECRYPT, 580-585, ISBN 978-989-758-590-6; ISSN 2184-7711, pages 580-585, 2022. DOI: 10.5220/0011279600003283. | pt_PT |
dc.description | A 19ª Conferência Internacional sobre Segurança e Criptografia, foi realizada nos dias 11-13 de julho, de 2022, em Lisboa, Portugal. | |
dc.description.abstract | Internet of Things (IoT) devices have become day-to-day technologies. They collect and share a large amount of data, including private data, and are an attractive target of potential attackers. On the other hand, machine learning has been used in several contexts to analyze and classify large volumes of data. Hence, using machine learning to classify network traffic data and identify anomalous traffic and potential attacks promises. In this work, we use deep and traditional machine learning to identify anomalous traffic in the IoT-23 dataset, which contains network traffic from real-world equipment. We apply feature selection and encoding techniques and expand the types of networks evaluated to improve existing results from the literature. We compare the performance of algorithms in binary classification, which separates normal from anomalous traffic, and in multiclass classification, which aims to identify the type of attack. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Prazeres, Nuno, Costa, Rogerio Luís de C., Santos, Leonel, and Rabadao, Carlos. ˜ Evaluation of AI-based Malware Detection in IoT Network Traffic. In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 580-585 - DOI: 10.5220/0011279600003283 - ISBN: 978-989- 758-590-6; ISSN: 2184-7711 | pt_PT |
dc.identifier.doi | http://dx.doi.org/10.5220/0011279600003283 | pt_PT |
dc.identifier.isbn | 978-989-758-590-6 | |
dc.identifier.issn | 2184-7711 | |
dc.identifier.slug | cv-prod-3056330 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/8175 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Science and Technology Publications | pt_PT |
dc.relation | UIDB/04524/2020 | pt_PT |
dc.relation | CEECI2018/FCT | pt_PT |
dc.relation.publisherversion | https://www.scitepress.org/PublicationsDetail.aspx?ID=v02bUYG54IM=&t=1 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Internet of Things | pt_PT |
dc.subject | Machine Learning | pt_PT |
dc.subject | Intrusion Detection Systems | pt_PT |
dc.subject | Cybersecurity | pt_PT |
dc.title | Evaluation of AI-based Malware Detection in IoT Network Traffic | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Lisboa, Portugal | pt_PT |
oaire.citation.endPage | 585 | pt_PT |
oaire.citation.startPage | 580 | pt_PT |
oaire.citation.title | Proceedings of the 19th International Conference on Security and Cryptography | pt_PT |
oaire.citation.volume | 1 | pt_PT |
person.familyName | Gonçalves dos Prazeres | |
person.familyName | de Carvalho Costa | |
person.familyName | Simões Santos | |
person.familyName | Rabadão | |
person.givenName | Nuno Alexandre | |
person.givenName | Rogério Luís | |
person.givenName | Leonel Filipe | |
person.givenName | Carlos | |
person.identifier.ciencia-id | 7717-9573-0C0F | |
person.identifier.ciencia-id | C212-374B-3FF1 | |
person.identifier.ciencia-id | 2C1C-E900-6A57 | |
person.identifier.orcid | 0000-0003-1760-6220 | |
person.identifier.orcid | 0000-0003-2306-7585 | |
person.identifier.orcid | 0000-0002-6883-7996 | |
person.identifier.orcid | 0000-0001-7332-4397 | |
person.identifier.rid | A-7940-2016 | |
person.identifier.rid | M-3235-2013 | |
person.identifier.scopus-author-id | 7801604983 | |
person.identifier.scopus-author-id | 57203544345 | |
person.identifier.scopus-author-id | 22433497800 | |
rcaap.cv.cienciaid | 7717-9573-0C0F | Rogério Luís de Carvalho Costa | |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | cb0ac77a-dc59-4d22-a29a-48558f53dc33 | |
relation.isAuthorOfPublication | 5654d934-3fa0-4afb-9b3b-f2736104924c | |
relation.isAuthorOfPublication | 68de522f-fc54-440b-83c2-7374dc26f0b3 | |
relation.isAuthorOfPublication | 99f438ca-9099-4e7e-91ea-1a5cbab7a1ab | |
relation.isAuthorOfPublication.latestForDiscovery | 5654d934-3fa0-4afb-9b3b-f2736104924c |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Secrypt_2022_Versao_Repositorio.pdf
- Size:
- 197.99 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.33 KB
- Format:
- Item-specific license agreed upon to submission
- Description: