Repository logo
 
Publication

Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

datacite.subject.sdg08:Trabalho Digno e Crescimento Económico
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
datacite.subject.sdg10:Reduzir as Desigualdades
dc.contributor.authorMoreira Bernardino, Anabela
dc.contributor.authorSánchez-Pérez, Juan Manuel
dc.contributor.authorGómez-Pulido, Juan Antonio
dc.contributor.authorVega-Rodríguez, Miguel Ángel
dc.contributor.authorBernardino, Eugénia Moreira
dc.date.accessioned2025-10-29T10:10:26Z
dc.date.available2025-10-29T10:10:26Z
dc.date.issued2012
dc.description.abstractIn the last decades, nature-inspired algorithms have been widely used to solve complex combinatorial optimisation problems. Among them, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms have been extensively employed as search and optimisation tools in various problem domains. Evolutionary and Swarm Intelligent algorithms are Artificial Intelligence (AI) techniques, inspired by natural evolution and adaptation. This paper presents two new nature-inspired algorithms, which use concepts of EAs and SI. The combination of EAs and SI algorithms can unify the fast speed of EAs to find global solutions and the good precision of SI algorithms to find good solutions using the feedback information. The proposed algorithms are applied to a complex NP-hard optimisation problem - the Terminal Assignment Problem (TAP). The objective is to minimise the link cost to form a network. The proposed algorithms are compared with several EAs and SI algorithms from literature. We show that the proposed algorithms are suitable for solving very large scaled problems in short computational times.eng
dc.description.sponsorshipThis work has been partially supported by the Polytechnic Institute of Leiria (Portugal) and the MSTAR Project. Reference: TIN 2008-06491-C04-04/TIN (MICINN Spain).
dc.identifier.citationBernardino, E.M., Bernardino, A.M., Sánchez-Pérez, J.M. et al. Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks. Int J Comput Intell Syst 5, 745–761 (2012). https://doi.org/10.1080/18756891.2012.718157
dc.identifier.doi10.1080/18756891.2012.718157
dc.identifier.issn1875-6883
dc.identifier.urihttp://hdl.handle.net/10400.8/14420
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Science and Business Media LLC
dc.relation.hasversionhttps://link.springer.com/article/10.1080/18756891.2012.718157
dc.relation.ispartofInternational Journal of Computational Intelligence Systems
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectEvolutionary Algorithms
dc.subjectSwarm Intelligence
dc.subjectTerminal Assignment Problem
dc.subjectGenetic algorithm with a new swarm mutation operator
dc.subjectQueen-bee Evolutionary Algorithm
dc.titleEvolutionary Swarm based algorithms to minimise the link cost in Communication Networkseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage761
oaire.citation.issue4
oaire.citation.startPage745
oaire.citation.titleInternational Journal of Computational Intelligence Systems
oaire.citation.volume5
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameMoreira Bernardino
person.familyNameBernardino
person.givenNameAnabela
person.givenNameEugénia
person.identifier.ciencia-id081E-F3B8-316A
person.identifier.ciencia-id9616-F1BC-D8BD
person.identifier.orcid0000-0002-6561-5730
person.identifier.orcid0000-0001-5301-5853
person.identifier.scopus-author-id24402754700
relation.isAuthorOfPublication375ebe15-f84c-46a4-a3d9-6e4935a92187
relation.isAuthorOfPublication893cf15c-eff8-4e43-949c-c1de6eb87599
relation.isAuthorOfPublication.latestForDiscovery375ebe15-f84c-46a4-a3d9-6e4935a92187

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18756891.2012.718157.pdf
Size:
442.32 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: