Repository logo
 
Publication

Use of Co-occurrences for Temporal Expressions Annotation

datacite.subject.fosCiências Naturais::Ciências da Computação e da Informação
datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorCraveiro, Olga
dc.contributor.authorMacedo, Joaquim
dc.contributor.authorMadeira, Henrique
dc.date.accessioned2025-05-19T14:04:38Z
dc.date.available2025-05-19T14:04:38Z
dc.date.issued2009-08
dc.description16th International Symposium on String Processing and Information Retrieval, SPIRE 200925 August 2009 through 27 August 2009 - Code 77796
dc.description.abstractThe annotation or extraction of temporal information from text documents is becoming increasingly important in many natural language processing applications such as text summarization, information retrieval, question answering, etc.. This paper presents an original method for easy recognition of temporal expressions in text documents. The method creates semantically classified temporal patterns, using word co-occurrences obtained from training corpora and a pre-defined seed keywords set, derived from the used language temporal references. A participation on a Portuguese named entity evaluation contest showed promising effectiveness and efficiency results. This approach can be adapted to recognize other type of expressions or languages, within other contexts, by defining the suitable word sets and training corpora.eng
dc.identifier.citationCraveiro, O., Macedo, J., Madeira, H. (2009). Use of Co-occurrences for Temporal Expressions Annotation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds) String Processing and Information Retrieval. SPIRE 2009. Lecture Notes in Computer Science, vol 5721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03784-9_15.
dc.identifier.doi10.1007/978-3-642-03784-9_15
dc.identifier.eissn1611-3349
dc.identifier.isbn9783642037832
dc.identifier.isbn9783642037849
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10400.8/12924
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.relation.hasversionhttps://link.springer.com/chapter/10.1007/978-3-642-03784-9_15
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartofString Processing and Information Retrieval
dc.rights.uriN/A
dc.subjectTemporal Expression
dc.subjectTraining Corpus
dc.subjectAnnotation Scheme
dc.subjectEntity Recognition
dc.subjectText Summarization
dc.titleUse of Co-occurrences for Temporal Expressions Annotationeng
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage164
oaire.citation.startPage156
oaire.citation.titleLecture Notes in Computer Science
oaire.citation.volume5721
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCraveiro
person.givenNameOlga
person.identifier.orcid0000-0001-5307-0465
relation.isAuthorOfPublicationd116d598-4bbf-4608-b721-7500260b918f
relation.isAuthorOfPublication.latestForDiscoveryd116d598-4bbf-4608-b721-7500260b918f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Use of co-occurrences for temporal expressions annotation.pdf
Size:
221.82 KB
Format:
Adobe Portable Document Format
Description:
The annotation or extraction of temporal information from text documents is becoming increasingly important in many natural language processing applications such as text summarization, information retrieval, question answering, etc.. This paper presents an original method for easy recognition of temporal expressions in text documents. The method creates semantically classified temporal patterns, using word co-occurrences obtained from training corpora and a pre-defined seed keywords set, derived from the used language temporal references. A participation on a Portuguese named entity evaluation contest showed promising effectiveness and efficiency results. This approach can be adapted to recognize other type of expressions or languages, within other contexts, by defining the suitable word sets and training corpora.
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: