Repository logo
 
Publication

Tunable Immune Detectors for Behaviour-Based Network Intrusion Detection

dc.contributor.authorAntunes, Mário
dc.contributor.authorCorreia, Manuel E.
dc.date.accessioned2025-11-27T16:43:30Z
dc.date.available2025-11-27T16:43:30Z
dc.date.issued2011
dc.description.abstractComputer networks are highly dynamic environments in which the meaning of normal and anomalous behaviours can drift considerably throughout time. Behaviour-based Network Intrusion Detection System (NIDS) have thus to cope with the temporal normality drift intrinsic on computer networks, by tuning adaptively its level of response, in order to be able to distinguish harmful from harmless network traffic flows. In this paper we put forward the intrinsic Tunable Activation Threshold (TAT) theory ability to adaptively tolerate normal drifting network traffic flows. This is embodied on the TAT-NIDS, a TAT-based Artificial Immune System (AIS) we have developed for network intrusion detection. We describe the generic AIS framework we have developed to assemble TAT-NIDS and present the results obtained thus far on processing real network traffic data sets. We also compare the performance obtained by TAT-NIDS with the well known and widely deployed signature-based snort network intrusion detection system.eng
dc.identifier.citationntunes, M., Correia, M.E. (2011). Tunable Immune Detectors for Behaviour-Based Network Intrusion Detection. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_29
dc.identifier.doi10.1007/978-3-642-22371-6_29
dc.identifier.isbn9783642223709
dc.identifier.isbn9783642223716
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/10400.8/14768
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Berlin Heidelberg
dc.relation.hasversionhttps://link.springer.com/chapter/10.1007/978-3-642-22371-6_29
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartofArtificial Immune Systems
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArtificial Immune System
dc.subjectTunable Activation Threshold
dc.subjectNetwork Intrusion Detection
dc.subjectAnomaly Detection
dc.titleTunable Immune Detectors for Behaviour-Based Network Intrusion Detectioneng
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferenceDate2011
oaire.citation.endPage347
oaire.citation.startPage334
oaire.citation.titleArtificial Immune Systems (ICARIS 2011)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAntunes
person.givenNameMário
person.identifierR-000-NX4
person.identifier.ciencia-idAF10-7EDD-5153
person.identifier.orcid0000-0003-3448-6726
person.identifier.scopus-author-id25930820200
relation.isAuthorOfPublicatione3e87fb0-d1d6-44c3-985d-920a5560f8c1
relation.isAuthorOfPublication.latestForDiscoverye3e87fb0-d1d6-44c3-985d-920a5560f8c1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
94.pdf
Size:
358.92 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: