Repository logo
 
Publication

Improving Text Classification Performance with Incremental Background Knowledge

datacite.subject.fosCiências Naturais::Ciências da Computação e da Informação
datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorSilva, Catarina
dc.contributor.authorRibeiro, Bernardete
dc.date.accessioned2025-05-19T13:35:14Z
dc.date.available2025-05-19T13:35:14Z
dc.date.issued2009-09
dc.description19th International Conference on Artificial Neural Networks, ICANN 2009, 14 September 2009 through 17 September 2009 - Code 77563
dc.description.abstractText classification is generally the process of extracting interesting and non-trivial information and knowledge from text. One of the main problems with text classification systems is the lack of labeled data, as well as the cost of labeling unlabeled data. Thus, there is a growing interest in exploring the use of unlabeled data as a way to improve classification performance in text classification. The ready availability of this kind of data in most applications makes it an appealing source of information. In this work we propose an Incremental Background Knowledge (IBK) technique to introduce unlabeled data into the training set by expanding it using initial classifiers to deliver oracle decisions. The defined incremental SVM margin-based method was tested in the Reuters-21578 benchmark showing promising results.eng
dc.identifier.citationSilva, C., Ribeiro, B. (2009). Improving Text Classification Performance with Incremental Background Knowledge. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_95.
dc.identifier.doi10.1007/978-3-642-04274-4_95
dc.identifier.eissn1611-3349
dc.identifier.isbn9783642042737
dc.identifier.isbn9783642042744
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10400.8/12920
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.relation.hasversionhttps://link.springer.com/chapter/10.1007/978-3-642-04274-4_95
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartofArtificial Neural Networks – ICANN 2009
dc.rights.uriN/A
dc.subjectSupport Vector Machine
dc.subjectText Categorization
dc.subjectUnlabeled Data
dc.subjectBasic Background Knowledge
dc.subjectBinary Class Problem
dc.titleImproving Text Classification Performance with Incremental Background Knowledgeeng
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage931
oaire.citation.startPage923
oaire.citation.titleLecture Notes in Computer Science
oaire.citation.volume5768
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSilva
person.givenNameCatarina
person.identifier.orcid0000-0002-5656-0061
relation.isAuthorOfPublicationee28e079-5ca7-4842-9094-372c40f75c38
relation.isAuthorOfPublication.latestForDiscoveryee28e079-5ca7-4842-9094-372c40f75c38

Files