Repository logo
 
Publication

Multi-Class Intrusion Detection in Internet of Vehicles: Optimizing Machine Learning Models on Imbalanced Data

datacite.subject.fosEngenharia e Tecnologia
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorPalma, Ágata
dc.contributor.authorAntunes, Mário
dc.contributor.authorBernardino, Jorge
dc.contributor.authorAlves, Ana
dc.date.accessioned2025-07-21T15:28:40Z
dc.date.available2025-07-21T15:28:40Z
dc.date.issued2025-04-07
dc.descriptionArticle number - 162
dc.description(This article belongs to the Special Issue Intrusion Detection and Resiliency in Cyber-Physical Systems and Networks)
dc.description.abstractThe Internet of Vehicles (IoV) presents complex cybersecurity challenges, particularly against Denial-of-Service (DoS) and spoofing attacks targeting the Controller Area Network (CAN) bus. This study leverages the CICIoV2024 dataset, comprising six distinct classes of benign traffic and various types of attacks, to evaluate advanced machine learning techniques for instrusion detection systems (IDS). The models XGBoost, Random Forest, AdaBoost, Extra Trees, Logistic Regression, and Deep Neural Network were tested under realistic, imbalanced data conditions, ensuring that the evaluation reflects real-world scenarios where benign traffic dominates. Using hyperparameter optimization with Optuna, we achieved significant improvements in detection accuracy and robustness. Ensemble methods such as XGBoost and Random Forest consistently demonstrated superior performance, achieving perfect accuracy and macro-average F1-scores, even when detecting minority attack classes, in contrast to previous results for the CICIoV2024 dataset. The integration of optimized hyperparameter tuning and a broader methodological scope culminated in an IDS framework capable of addressing diverse attack scenarios with exceptional precision.eng
dc.identifier.citationPalma, Á.; Antunes, M.; Bernardino, J.; Alves, A. Multi-Class Intrusion Detection in Internet of Vehicles: Optimizing Machine Learning Models on Imbalanced Data. Future Internet 2025, 17, 162. https:// doi.org/10.3390/fi17040162
dc.identifier.doi10.3390/fi17040162
dc.identifier.issn1999-5903
dc.identifier.urihttp://hdl.handle.net/10400.8/13737
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relation.hasversionhttps://www.mdpi.com/1999-5903/17/4/162
dc.relation.ispartofFuture Internet
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCybersecurity
dc.subjectMachine learning
dc.subjectImbalanced data
dc.subjectInternet of vehicles (IoV)
dc.subjectIntrusion detection system (IDS)
dc.subjectMulti-class classification
dc.titleMulti-Class Intrusion Detection in Internet of Vehicles: Optimizing Machine Learning Models on Imbalanced Dataeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue4
oaire.citation.titleFuture Internet
oaire.citation.volume17
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAntunes
person.givenNameMário
person.identifierR-000-NX4
person.identifier.ciencia-idAF10-7EDD-5153
person.identifier.orcid0000-0003-3448-6726
person.identifier.scopus-author-id25930820200
relation.isAuthorOfPublicatione3e87fb0-d1d6-44c3-985d-920a5560f8c1
relation.isAuthorOfPublication.latestForDiscoverye3e87fb0-d1d6-44c3-985d-920a5560f8c1

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
futureinternet-17-00162.pdf
Size:
274.05 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: