Publication
Eigenfunctions of the time‐fractional diffusion‐wave operator
| dc.contributor.author | Ferreira, M. | |
| dc.contributor.author | Luchko, Yu. | |
| dc.contributor.author | Rodrigues, M. M. | |
| dc.contributor.author | Vieira, N. | |
| dc.date.accessioned | 2021-03-18T17:20:06Z | |
| dc.date.available | 2021-12-01T01:30:15Z | |
| dc.date.issued | 2020-12-06 | |
| dc.description.abstract | In this paper, we present some new integral and series representations for the eigenfunctions of the multidimensional time-fractional diffusion-wave operator with the time-fractional derivative of order $\beta \in ]1,2[$ defined in the Caputo sense. The integral representations are obtained in form of the inverse Fourier-Bessel transform and as double contour integrals of the Mellin-Barnes type. Concerning series expansions, the eigenfunctions are expressed as the double generalized hypergeometric series for any $\beta \in ]1,2[$ and as Kamp\'{e} de F\'{e}riet and Lauricella series in two variables for the rational values of $\beta$. The limit cases $\beta=1$ (diffusion operator) and $\beta=2$ (wave operator) as well as an intermediate case $\beta=\frac{3}{2}$ are studied in detail. Finally, we provide several plots of the eigenfunctions to some selected eigenvalues for different particular values of the fractional derivative order $\beta$ and the spatial dimension $n$. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Ferreira, M., Luchko, Yu., Rodrigues, M.M., Vieira, N., Eigenfunctions of the time‐fractional diffusion‐wave operator. Math Meth Appl Sci. 2021; 44(2): 1713–1743. https://doi.org/10.1002/mma.6874 | pt_PT |
| dc.identifier.doi | https://doi.org/10.1002/mma.6874 | pt_PT |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.issn | 1099-1476 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/5523 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Wiley Online Library | pt_PT |
| dc.relation | Not Available | |
| dc.relation | Center for Research and Development in Mathematics and Applications | |
| dc.relation | Center for Research and Development in Mathematics and Applications | |
| dc.relation.publisherversion | https://onlinelibrary.wiley.com/doi/10.1002/mma.6874 | pt_PT |
| dc.subject | Time-fractional diffusion-wave operator Eigenfunctions; Caputo fractional derivatives; Generalized hypergeometric series. | pt_PT |
| dc.subject | Eigenfunctions | pt_PT |
| dc.subject | Caputo fractional derivatives | pt_PT |
| dc.subject | Generalized hypergeometric series | pt_PT |
| dc.title | Eigenfunctions of the time‐fractional diffusion‐wave operator | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Not Available | |
| oaire.awardTitle | Center for Research and Development in Mathematics and Applications | |
| oaire.awardTitle | Center for Research and Development in Mathematics and Applications | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND%2F01131%2F2018%2FCP1559%2FCT0014/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04106%2F2020/PT | |
| oaire.citation.endPage | 1743 | pt_PT |
| oaire.citation.issue | 2 | pt_PT |
| oaire.citation.startPage | 1713 | pt_PT |
| oaire.citation.title | Mathematical Methods in the Applied Sciences | pt_PT |
| oaire.citation.volume | 44 | pt_PT |
| oaire.fundingStream | CEEC IND 2018 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Ferreira | |
| person.familyName | Rodrigues | |
| person.familyName | Vieira | |
| person.givenName | Milton | |
| person.givenName | M. Manuela | |
| person.givenName | Nelson | |
| person.identifier.ciencia-id | CA19-2009-F26D | |
| person.identifier.ciencia-id | 461D-A5E2-23BE | |
| person.identifier.ciencia-id | 9418-DDFB-DE9D | |
| person.identifier.orcid | 0000-0003-1816-8293 | |
| person.identifier.orcid | 0000-0002-8834-5841 | |
| person.identifier.orcid | 0000-0001-8756-4893 | |
| person.identifier.rid | A-2004-2015 | |
| person.identifier.rid | H-9130-2013 | |
| person.identifier.scopus-author-id | 12144179800 | |
| person.identifier.scopus-author-id | 22835991500 | |
| person.identifier.scopus-author-id | 55576073000 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | b1460cdc-4ced-46c6-a637-68b425d104dc | |
| relation.isAuthorOfPublication | 57767487-249d-4111-a6c5-a22fed15d8ea | |
| relation.isAuthorOfPublication | f530f82c-8351-4c64-a33e-4c34fe4ac22a | |
| relation.isAuthorOfPublication.latestForDiscovery | f530f82c-8351-4c64-a33e-4c34fe4ac22a | |
| relation.isProjectOfPublication | e8d37498-c6ee-4714-baac-d411ad6776f1 | |
| relation.isProjectOfPublication | 198b0a26-89c6-4507-9459-313b8f692514 | |
| relation.isProjectOfPublication | 12b5a55f-76f1-4cab-b7e3-cb84215f36c1 | |
| relation.isProjectOfPublication.latestForDiscovery | 198b0a26-89c6-4507-9459-313b8f692514 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Eigenfunctions_Time_fractional_diffusion_operator_Post_Print.pdf
- Size:
- 5.01 MB
- Format:
- Adobe Portable Document Format
- Description:
