Publicação
Deconvolution of X-ray Diffraction Profiles Using Genetic Algorithms and Differential Evolution
| datacite.subject.fos | Engenharia e Tecnologia | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| dc.contributor.author | Santos, Sidolina P. | |
| dc.contributor.author | Gomez-Pulido, Juan A. | |
| dc.contributor.author | Sanchez-Bajo, Florentino | |
| dc.date.accessioned | 2025-10-27T14:21:32Z | |
| dc.date.available | 2025-10-27T14:21:32Z | |
| dc.date.issued | 2015-06 | |
| dc.description | Part of the book series: Lecture Notes in Computer Science (LNTCS,volume 9095). | |
| dc.description | BooK part in: Advances in Computational Intelligence 13th International Work-Conference on Artificial Neural Networks, IWANN 2015, Palma de Mallorca, Spain, June 10-12, 2015. Proceedings, Part II Conference proceedings, 2015 | |
| dc.description | Conference city Palma de Mallorca | |
| dc.description | Conference date 10 June 2015 - 12 June 2015 | |
| dc.description | Conference code 119669 | |
| dc.description.abstract | Some optimization problems arise when X-ray diffraction profiles are used to determine the microcrystalline characteristics of materials, like the detection of diffraction peaks and the deconvolution process necessary to obtain the pure diffraction profile. After applying the genetic algorithms to solve satisfactorily the first problem, in this work we propose two evolutionary algorithms to solve the deconvolution problem. This optimization problem targets the objective of obtaining the profile that contains the microstructural characteristics of a material from the experimental data and instrumental effects. This is a complex problem, ill-conditioned, since not only there are many possible solutions, but also some of them lack physical sense. In order to avoid such circumstance, the regularization techniques are used, where the optimization of some of their parameters by means of intelligent computing permits to obtain the optimal solutions of the problem. | eng |
| dc.identifier.citation | Santos, S.P., Gomez-Pulido, J.A., Sanchez-Bajo, F. (2015). Deconvolution of X-ray Diffraction Profiles Using Genetic Algorithms and Differential Evolution. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9095. Springer, Cham. https://doi.org/10.1007/978-3-319-19222-2_42 | |
| dc.identifier.doi | 10.1007/978-3-319-19222-2_42 | |
| dc.identifier.isbn | 9783319192215 | |
| dc.identifier.isbn | 9783319192222 | |
| dc.identifier.issn | 0302-9743 | |
| dc.identifier.issn | 1611-3349 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/14381 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Springer Nature | |
| dc.relation.hasversion | https://link.springer.com/chapter/10.1007/978-3-319-19222-2_42 | |
| dc.relation.ispartof | Lecture Notes in Computer Science | |
| dc.relation.ispartof | Advances in Computational Intelligence | |
| dc.rights.uri | N/A | |
| dc.subject | Deconvolution | |
| dc.subject | Differential evolution | |
| dc.subject | Diffraction profiles | |
| dc.subject | Genetic algorithms | |
| dc.subject | X-ray | |
| dc.title | Deconvolution of X-ray Diffraction Profiles Using Genetic Algorithms and Differential Evolution | eng |
| dc.type | book part | |
| dspace.entity.type | Publication | |
| oaire.citation.endPage | 514 | |
| oaire.citation.startPage | 503 | |
| oaire.citation.title | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
| oaire.citation.volume | 9095 | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Santos | |
| person.givenName | Sidolina | |
| person.identifier.orcid | 0009-0009-5676-7941 | |
| relation.isAuthorOfPublication | 4d56204e-7de0-4234-97f3-784a0dc99462 | |
| relation.isAuthorOfPublication.latestForDiscovery | 4d56204e-7de0-4234-97f3-784a0dc99462 |
Ficheiros
Principais
1 - 1 de 1
A carregar...
- Nome:
- Table of contents_Advances in Computational Intelligence_Deconvolution of X-ray Diffraction Profiles_.pdf
- Tamanho:
- 238.15 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- O anexo trata-se de "Table of contents" do livro "Advances in Computational Intelligence_Deconvolution of X-ray Diffraction". Profiles". - O capítulo "Deconvolution of X-ray Diffraction Profiles Using Genetic Algorithms and Differential Evolution", parte de livro, pp. 503-514.
Licença
1 - 1 de 1
Miniatura indisponível
- Nome:
- license.txt
- Tamanho:
- 1.32 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
