Repository logo
 
Publication

Spherical continuous wavelet transforms arising from sections of the Lorentz group

dc.contributor.authorFerreira, Milton
dc.date.accessioned2019-02-07T15:49:46Z
dc.date.available2019-02-07T15:49:46Z
dc.date.issued2009-03
dc.description.abstractWe consider the conformal group of the unit sphere Sn−1, the so-called proper Lorentz group Spin+(1,n), for the study of spherical continuous wavelet transforms. Our approach is based on the method for construction of general coherent states associated to square integrable group representations over homogeneous spaces. The underlying homogeneous space is an extension to the whole of the group Spin+(1,n) of the factorization of the gyrogroup of the unit ball by an appropriate gyro-subgroup. Sections on it are constituted by rotations of the subgroup Spin(n) and Möbius transformations of the type ϕa(x) = (x −a)(1 + ax)−1, where a belongs to a given section on a quotient space of the unit ball. This extends in a natural way the work of Antoine and Vandergheynst to anisotropic conformal dilations on the unit sphere.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira M., Spherical Continuous wavelet transforms arising from sections of the Lorentz group, Appl. Comput. Harmon. Anal. 26 (2) (2009), 212-229pt_PT
dc.identifier.doi10.1016/j.acha.2008.04.005pt_PT
dc.identifier.issn1063-5203
dc.identifier.other1096-603X
dc.identifier.urihttp://hdl.handle.net/10400.8/3820
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1063520308000523pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectSpherical continuous wavelet transformpt_PT
dc.subjectGyrogroupspt_PT
dc.subjectQuotient spacespt_PT
dc.subjectHomogeneous spacespt_PT
dc.subjectSectionspt_PT
dc.subjectAnisotropic dilationspt_PT
dc.titleSpherical continuous wavelet transforms arising from sections of the Lorentz grouppt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F12744%2F2003/PT
oaire.citation.endPage229pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage212pt_PT
oaire.citation.titleApplied and Computational Harmonic Analysispt_PT
oaire.citation.volume26pt_PT
oaire.fundingStreamSFRH
person.familyNameFerreira
person.givenNameMilton
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.orcid0000-0003-1816-8293
person.identifier.ridA-2004-2015
person.identifier.scopus-author-id12144179800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublication.latestForDiscoveryb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isProjectOfPublicationc3947b17-63b2-48d3-8ad6-a258557db8bc
relation.isProjectOfPublication.latestForDiscoveryc3947b17-63b2-48d3-8ad6-a258557db8bc

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spher_wavelet_transf_sect_Lorentz_group_Post_Print.pdf
Size:
346.38 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: