Repository logo
 
Loading...
Thumbnail Image
Publication

Constant Size Point Cloud Clustering: a Compact, Non-Overlapping Solution

Use this identifier to reference this record.
Name:Description:Size:Format: 
09000649.pdf1.39 MBAdobe PDF Download

Advisor(s)

Abstract(s)

Point clouds have recently become a popular 3D representation model for many application domains, notably virtual and augmented reality. Since point cloud data is often very large, processing a point cloud may require that it be segmented into smaller clusters. For example, the input to deep learning-based methods like auto-encoders should be constant size point cloud clusters, which are ideally compact and non-overlapping. However, given the unorganized nature of point clouds, defining the specific data segments to code is not always trivial. This paper proposes a point cloud clustering algorithm which targets five main goals: i) clusters with a constant number of points; ii) compact clusters, i.e. with low dispersion; iii) non-overlapping clusters, i.e. not intersecting each other; iv) ability to scale with the number of points; and v) low complexity. After appropriate initialization, the proposed algorithm transfers points between neighboring clusters as a propagation wave, filling or emptying clusters until they achieve the same size. The proposed algorithm is unique since there is no other point cloud clustering method available in the literature offering the same clustering features for large point clouds at such low complexity

Description

Keywords

Point cloud Point cloud clustering Constant size Compactness Non-overlapping

Pedagogical Context

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

IEEE

CC License

Altmetrics