Publication
On the classification of Schreier extensions of monoids with non-abelian kernel
dc.contributor.author | Martins-Ferreira, Nelson | |
dc.contributor.author | Montoli, Andrea | |
dc.contributor.author | Patchkoria, Alex | |
dc.contributor.author | Sobral, Manuela | |
dc.date.accessioned | 2023-04-17T09:41:54Z | |
dc.date.available | 2023-04-17T09:41:54Z | |
dc.date.issued | 2020 | |
dc.description | This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2019, by ESTG and CDRSP from the Polytechnical Institute of Leiria – UID/Multi/04044/ 2019, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. The second author was partially supported by the Programma per Giovani Ricercatori “Rita Levi-Montalcini”, funded by the Italian government through MIUR. The third author was supported by the Shota Rustaveli National Science Foundation of Georgia (SRNSFG), grant FR-18-10849, “Stable Structures in Homological Algebra”. | pt_PT |
dc.description.abstract | We show that any regular (right) Schreier extension of a monoid M by a monoid A induces an abstract kernel Φ: M → End(A)/Inn(A) . If an abstract kernel factors through SEnd(A)/Inn(A) , where SEnd(A) is the monoid of surjective endomorphisms of A, then we associate to it an obstruction, which is an element of the third cohomology group of M with coefficients in the abelian group U(Z(A)) of invertible elements of the center Z(A) of A, on which M acts via Φ. An abstract kernel Φ: M → SEnd(A)/Inn(A) (resp. Φ: M → Aut(A)/Inn(A) ) is induced by a regular weakly homogeneous (resp. homogeneous) Schreier extension of M by A if and only if its obstruction is zero.We also show that the set of isomorphism classes of regular weakly homogeneous (resp. homogeneous) Schreier extensions inducing a given abstract kernel Φ: M → SEnd(A)/Inn(A) (resp. Φ: M → Aut(A)/Inn(A) ), when it is not empty, is in bijection with the second cohomology group of M with coefficients in U(Z(A)). | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Martins-Ferreira, N., Montoli, A., Patchkoria, A. & Sobral, M. (2020). On the classification of Schreier extensions of monoids with non-abelian kernel. Forum Mathematicum, 32(3), 607-623. https://doi.org/10.1515/forum-2019-0164 | pt_PT |
dc.identifier.doi | 10.1515/forum-2019-0164 | pt_PT |
dc.identifier.issn | 1435-5337 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/8387 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | De Gruyter | pt_PT |
dc.relation | Center for Mathematics, University of Coimbra | |
dc.relation | Centre for Rapid and Sustainable Product Development | |
dc.relation.publisherversion | https://www.degruyter.com/document/doi/10.1515/forum-2019-0164/html#APA | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Monoid | pt_PT |
dc.subject | Schreier extension | pt_PT |
dc.subject | Obstruction | pt_PT |
dc.subject | Eilenberg–Mac Lane cohomology of monoids | pt_PT |
dc.title | On the classification of Schreier extensions of monoids with non-abelian kernel | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Mathematics, University of Coimbra | |
oaire.awardTitle | Centre for Rapid and Sustainable Product Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00324%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMulti%2F04044%2F2019/PT | |
oaire.citation.endPage | 623 | pt_PT |
oaire.citation.issue | 3 | pt_PT |
oaire.citation.startPage | 607 | pt_PT |
oaire.citation.title | Forum Mathematicum | pt_PT |
oaire.citation.volume | 32 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Martins-Ferreira | |
person.givenName | Nelson | |
person.identifier | 485301 | |
person.identifier.ciencia-id | B115-B65E-24AA | |
person.identifier.orcid | 0000-0002-4199-7367 | |
person.identifier.rid | N-1699-2013 | |
person.identifier.scopus-author-id | 24598020700 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 52406f6a-2c36-4e9a-9996-d3cc719d46bf | |
relation.isAuthorOfPublication.latestForDiscovery | 52406f6a-2c36-4e9a-9996-d3cc719d46bf | |
relation.isProjectOfPublication | 4414d560-f34f-4920-8c43-c9101f04ad9e | |
relation.isProjectOfPublication | aba3abaa-39ca-424c-a7d7-4d06649c5236 | |
relation.isProjectOfPublication.latestForDiscovery | 4414d560-f34f-4920-8c43-c9101f04ad9e |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Martins-Ferreira et al_2020_On the classification.pdf
- Size:
- 634.42 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: