Publication
Explainable prototype-based image classification using adaptive feature extractors in medical images
| datacite.subject.fos | Ciências Médicas::Ciências da Saúde | |
| datacite.subject.fos | Engenharia e Tecnologia | |
| datacite.subject.sdg | 03:Saúde de Qualidade | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| datacite.subject.sdg | 10:Reduzir as Desigualdades | |
| dc.contributor.author | Vasconcellos, Nicolas | |
| dc.contributor.author | Tavora, Luis M. N. | |
| dc.contributor.author | Miragaia, Rolando | |
| dc.contributor.author | Grilo, Carlos | |
| dc.contributor.author | Thomaz, Lucas | |
| dc.date.accessioned | 2026-01-06T16:30:14Z | |
| dc.date.available | 2026-01-06T16:30:14Z | |
| dc.date.issued | 2025-12 | |
| dc.description | Article number - 111322. | |
| dc.description.abstract | Prototype-based classifiers are a category of Explainable Artificial Intelligence methods that use representative samples from the data, called prototypes, to classify new inputs based on a similarity criterion. However, these methods often rely on pre-trained Convolutional Neural Networks as feature extractors, which may not be adapted for the specific type of data being used, thus not suited for identifying the most representative prototypes. In this paper, we propose a method named Explainable Prototype-based Image Classification, a cluster-oriented training strategy that enhances the performance and explainability of prototype-based classifiers. Our method uses a novel loss function, called Cluster Density Error, to fine-tune the feature extractor and preserve the most representative feature vectors in the latent space. We also use Principal Component Analysis-based approach to reduce the dimensionality and complexity of the feature vectors. We conduct experiments on four medical image datasets and compare the results with those from different prototype-based classifiers and state-of-the-art non-explainable learning methods. The proposed method demonstrated superior explainable capabilities and comparable classification performance to the compared methods. Specifically, the proposed method achieved up to 95.01% accuracy and 0.992 AUC using only 43 prototypes. This translated to an improvement in accuracy and AUC score of 21.54% and 9.06%, respectively, and a substantial reduction in the number of prototypes by 98,38% | eng |
| dc.description.sponsorship | This work is funded by the Polytechnic of Leiria under the project ‘‘1◦ Prémio + Ciência 2024’’, national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P. under projects CoMBINNe 2022.09914.PTDC (DOI: 10.54499/2022.09914.PTDC), 2023.07886. CEECIND (DOI: 10.54499/2023.07886.CEECIND/CP2862/CT0003), and UID/4524/2025 (DOI: 10.54499/UID/04524/2025), and, when eligible, co-funded by EU funds under project/support UID/50008/2025 – Instituto de Telecomunicações, with DOI identifier 10.54499/UID/5008/2025 and LA/P/0109/2020 (DOI: 10.54499/LA/P/0109/2020). | |
| dc.identifier.citation | Nicolas Vasconcellos, Luis M.N. Tavora, Rolando Miragaia, Carlos Grilo, Lucas A. Thomaz, Explainable prototype-based image classification using adaptive feature extractors in medical images, Computers in Biology and Medicine, Volume 199, 2025, 111322, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2025.111322 | |
| dc.identifier.doi | 10.1016/j.compbiomed.2025.111322 | |
| dc.identifier.issn | 0010-4825 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/15231 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier | |
| dc.relation | Compression of Multimodal Biomedical Images using Neural Networks | |
| dc.relation | Institute of Telecommunications | |
| dc.relation.hasversion | https://www.sciencedirect.com/science/article/pii/S0010482525016762?via%3Dihub | |
| dc.relation.ispartof | Computers in Biology and Medicine | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Explainable artificial intelligence | |
| dc.subject | Explainable classification | |
| dc.subject | Prototype-based classifiers | |
| dc.subject | Clustering | |
| dc.subject | Adaptive feature extractors | |
| dc.subject | Medical imaging | |
| dc.subject | Medical imaging classification | |
| dc.title | Explainable prototype-based image classification using adaptive feature extractors in medical images | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Compression of Multimodal Biomedical Images using Neural Networks | |
| oaire.awardTitle | Institute of Telecommunications | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/2022.09914.PTDC/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0109%2F2020/PT | |
| oaire.citation.title | Computers in Biology and Medicine | |
| oaire.citation.volume | 199 | |
| oaire.fundingStream | 3599-PPCDT | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.affiliation.name | CIIC / ESTG | |
| person.familyName | Freire Vasconcellos | |
| person.familyName | de Oliveira Pegado de Noronha E Távora | |
| person.familyName | Miragaia | |
| person.familyName | Grilo | |
| person.familyName | Thomaz | |
| person.givenName | Nicolas David | |
| person.givenName | Luís Miguel | |
| person.givenName | Rolando | |
| person.givenName | Carlos | |
| person.givenName | Lucas | |
| person.identifier.ciencia-id | 8410-201C-07BD | |
| person.identifier.ciencia-id | 121C-FADA-D750 | |
| person.identifier.ciencia-id | C712-E02E-0ED2 | |
| person.identifier.ciencia-id | 081D-025A-33BC | |
| person.identifier.orcid | 0009-0009-9208-0020 | |
| person.identifier.orcid | 0000-0002-8580-1979 | |
| person.identifier.orcid | 0000-0003-4213-9302 | |
| person.identifier.orcid | 0000-0001-9727-905X | |
| person.identifier.orcid | 0000-0002-1004-7772 | |
| person.identifier.rid | GLS-3615-2022 | |
| person.identifier.rid | M-9551-2013 | |
| person.identifier.scopus-author-id | 26422369700 | |
| person.identifier.scopus-author-id | 23466972200 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | feba3b54-be4c-49e4-84f4-e4e05bb13e67 | |
| relation.isAuthorOfPublication | 71940f24-f333-4ab6-abf6-00c7119a07c2 | |
| relation.isAuthorOfPublication | c3934650-8cbe-40cd-bb29-31c57baa49e2 | |
| relation.isAuthorOfPublication | f2075503-40b3-49da-81c3-e0c50f97c9ab | |
| relation.isAuthorOfPublication | 5aaecc29-3e2f-49a6-9fd9-7000d9f6085f | |
| relation.isAuthorOfPublication.latestForDiscovery | 71940f24-f333-4ab6-abf6-00c7119a07c2 | |
| relation.isProjectOfPublication | 5fe22f63-2c55-4683-bae7-89d5dba06107 | |
| relation.isProjectOfPublication | 43215f6c-bfb6-4829-8e75-6096384ce6db | |
| relation.isProjectOfPublication.latestForDiscovery | 5fe22f63-2c55-4683-bae7-89d5dba06107 |
