Repository logo
 
Thumbnail Image
Publication

UAV Landing Using Computer Vision Techniques for Human Detection

Use this identifier to reference this record.
Name:Description:Size:Format: 
article-UAV-landing.pdf5.54 MBAdobe PDF Download

Advisor(s)

Abstract(s)

The capability of drones to perform autonomous missions has led retail companies to use them for deliveries, saving time and human resources. In these services, the delivery depends on the Global Positioning System (GPS) to define an approximate landing point. However, the landscape can interfere with the satellite signal (e.g., tall buildings), reducing the accuracy of this approach. Changes in the environment can also invalidate the security of a previously defined landing site (e.g., irregular terrain, swimming pool). Therefore, the main goal of this work is to improve the process of goods delivery using drones, focusing on the detection of the potential receiver. We developed a solution that has been improved along its iterative assessment composed of five test scenarios. The built prototype complements the GPS through Computer Vision (CV) algorithms, based on Convolutional Neural Networks (CNN), running in a Raspberry Pi 3 with a Pi NoIR Camera (i.e., No InfraRed-without infrared filter). The experiments were performed with the models Single Shot Detector (SSD) MobileNet-V2, and SSDLite-MobileNet-V2. The best results were obtained in the afternoon, with the SSDLite architecture, for distances and heights between 2.5-10 m, with recalls from 59%-76%. The results confirm that a low computing power and cost-effective system can perform aerial human detection, estimating the landing position without an additional visual marker.

Description

Keywords

Autonomous delivery Computer vision Deep neural networks Intelligent vehicles Internet of things Next generation services Real-time systems Remote sensing Unmanned aerial vehicles Unmanned aircraft systems

Citation

Safadinho, D.; Ramos, J.; Ribeiro, R.; Filipe, V.; Barroso, J.; Pereira, A. UAV Landing Using Computer Vision Techniques for Human Detection. Sensors 2020, 20, 613. https://doi.org/10.3390/s20030613

Research Projects

Organizational Units

Journal Issue