Publication
Improving Point Cloud to Surface Reconstruction with Generalized Tikhonov Regularization
dc.contributor.author | Guarda, André | |
dc.contributor.author | Bioucas-Dias, José M. | |
dc.contributor.author | M. M. Rodrigues, Nuno | |
dc.contributor.author | Pereira, Fernando | |
dc.contributor.author | Bernardo Pereira, Fernando Manuel | |
dc.date.accessioned | 2025-05-20T09:59:26Z | |
dc.date.available | 2025-05-20T09:59:26Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Point cloud rendering has a vital role in the user Quality of Experience for applications adopting point cloud based representations. While this is not a new area, it has recently become more relevant with the recent interest on point cloud coding by major standardization groups, notably JPEG and MPEG. The screened Poisson surface reconstruction is a state-ofthe- art technique for generating a watertight surface mesh from the point cloud samples. While its screening component allows the surface to better fit the cloud points, this fitting may lead to undesired artifacts in the surface, notably when the point cloud is noisy. This paper proposes to improve this reconstruction method by making it more robust to noise by adopting a generalized Tikhonov regularization term. The proposed regularization approach smooths regions that should be flat while keeping the important details in the edges, thus creating more pleasant surface reconstructions. | eng |
dc.description.sponsorship | SFRH/BD/118218/2016 | |
dc.identifier.citation | A. F. R. Guarda, J. M. Bioucas-Dias, N. M. M. Rodrigues and F. Pereira, "Improving point cloud to surface reconstruction with generalized Tikhonov regularization," 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 2017, pp. 1-6, doi: 10.1109/MMSP.2017.8122287 | |
dc.identifier.doi | 10.1109/MMSP.2017.8122287 | |
dc.identifier.eissn | 2473-3628 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/12935 | |
dc.language.iso | eng | |
dc.peerreviewed | n/a | |
dc.publisher | IEEE | |
dc.relation | Efficient lossy and lossless compression of point clouds | |
dc.rights.uri | N/A | |
dc.subject | Point cloud rendering | |
dc.subject | surface reconstruction | |
dc.subject | generalized Tikhonov regularization | |
dc.subject | denoising | |
dc.title | Improving Point Cloud to Surface Reconstruction with Generalized Tikhonov Regularization | eng |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.awardTitle | Efficient lossy and lossless compression of point clouds | |
oaire.awardURI | http://hdl.handle.net/10400.8/12910 | |
oaire.citation.conferenceDate | 2017-10-16 | |
oaire.citation.conferencePlace | Luton, UK | |
oaire.citation.title | IEEE 19th International Workshop on Multimedia Signal Processing (MMSP) | |
oaire.fundingStream | OE | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Guarda | |
person.familyName | M. M. Rodrigues | |
person.familyName | Bernardo Pereira | |
person.givenName | André | |
person.givenName | Nuno | |
person.givenName | Fernando Manuel | |
person.identifier.ciencia-id | F811-146F-4EE9 | |
person.identifier.ciencia-id | 8010-A48A-90F0 | |
person.identifier.orcid | 0000-0001-5996-1074 | |
person.identifier.orcid | 0000-0001-9536-1017 | |
person.identifier.orcid | 0000-0001-6100-947X | |
person.identifier.scopus-author-id | 7006052345 | |
person.identifier.scopus-author-id | 55952373800 | |
relation.isAuthorOfPublication | ab4d7e6e-b391-49ba-a618-a52fc62c8837 | |
relation.isAuthorOfPublication | b4ebe652-7f0e-4e67-adb0-d5ea29fc9e69 | |
relation.isAuthorOfPublication | cb14fa15-4cd7-4d35-ba91-c4ad2d634549 | |
relation.isAuthorOfPublication.latestForDiscovery | ab4d7e6e-b391-49ba-a618-a52fc62c8837 | |
relation.isProjectOfPublication | d619b8c6-7ef9-4635-98fd-a9a7be25e5f8 | |
relation.isProjectOfPublication.latestForDiscovery | d619b8c6-7ef9-4635-98fd-a9a7be25e5f8 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Improving_point_cloud_to_surface_reconstruction_with_generalized_Tikhonov_regularization.pdf
- Size:
- 709.51 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: