Repository logo
 
Publication

STM-GNN: Space-Time-and-Memory Graph Neural Networks for Predicting Multi-Drug Resistance Risks in Dynamic Patient Networks

datacite.subject.fosCiências Médicas::Ciências da Saúde
datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg17:Parcerias para a Implementação dos Objetivos
dc.contributor.authorGeissbuhler, Damien
dc.contributor.authorBornet, Alban
dc.contributor.authorMarques, Catarina
dc.contributor.authorAnjos, André
dc.contributor.authorPereira, Sónia
dc.contributor.authorTeodoro, Douglas
dc.date.accessioned2025-10-06T09:38:54Z
dc.date.available2025-10-06T09:38:54Z
dc.date.embargo2026-10-01
dc.date.issued2025-06
dc.date.updated2025-10-04T23:05:30Z
dc.descriptionBook Series Part of the book series: Lecture Notes in Computer Science (LNAI,volume 15734)
dc.description.abstractHospital-acquired infections (HAIs), particularly those caused by multidrug-resistant (MDR) bacteria, pose significant risks to vulnerable patients. Accurate predictive models are important for assessing infection dynamics and informing infection prediction and control (IPC) programmes. Graph-based methods, including graph neural networks (GNNs), offer a powerful approach to model complex relationships between patients and environments but often struggle with data sparsity, irregularity, and heterogeneity. We propose the space-time-and-memory (STM)-GNN, a temporal GNN enhanced with recurrent connectivity designed to capture spatiotemporal infection dynamics. STM-GNN effectively integrates sparse, heterogeneous data combining network information from patient-environment interactions and internal memory from historical colonization and contact patterns. Using a unique IPC dataset containing clinical and environmental colonization information collected from a long-term healthcare unit, we show that STM-GNN effectively addresses the challenges of limited and irregular data in an MDR prediction task. Our model reaches 0.84 AUROC, and achieves the most balanced performance overall compared to classic machine learning algorithms, as well as temporal GNN approaches.eng
dc.description.sponsorship
dc.description.versioninfo:eu-repo/semantics/accepdedVersion
dc.identifier.citationGeissbuhler, D., Bornet, A., Marques, C., Anjos, A., Pereira, S., Teodoro, D. (2025). STM-GNN: Space-Time-and-Memory Graph Neural Networks for Predicting Multi-Drug Resistance Risks in Dynamic Patient Networks. In: Bellazzi, R., Juarez Herrero, J.M., Sacchi, L., Zupan, B. (eds) Artificial Intelligence in Medicine. AIME 2025. Lecture Notes in Computer Science(), vol 15734. Springer, Cham. https://doi.org/10.1007/978-3-031-95838-0_16
dc.identifier.doi10.1007/978-3-031-95838-0_16en_US
dc.identifier.isbn9783031958373en_US
dc.identifier.isbn9783031958380en_US
dc.identifier.issn0302-9743en_US
dc.identifier.issn1611-3349en_US
dc.identifier.slugcv-prod-4535280
dc.identifier.urihttp://hdl.handle.net/10400.8/14203
dc.language.isoeng
dc.peerreviewedno
dc.publisherSpringer Nature
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectHospital acquired infection
dc.subjectTemporal graph neural network
dc.titleSTM-GNN: Space-Time-and-Memory Graph Neural Networks for Predicting Multi-Drug Resistance Risks in Dynamic Patient Networkseng
dc.typebook parten_US
dspace.entity.typePublication
oaire.citation.endPage169
oaire.citation.startPage160
oaire.citation.titleArtificial Intelligence in Medicineen_US
oaire.citation.volume15734 LNAI
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameGonçalves Pereira
person.givenNameSónia
person.identifier461252
person.identifier.ciencia-idEB1F-4DB2-B0C9
person.identifier.orcid0000-0001-8197-1850
person.identifier.ridM-7588-2017
person.identifier.scopus-author-id7202024712
rcaap.cv.cienciaid8615-92D1-7858 | Sónia Gonçalves Pereira
rcaap.rightsembargoedAccessen_US
relation.isAuthorOfPublication259ad2cc-f9ff-4c33-ad6d-10f5b3ff341a
relation.isAuthorOfPublication.latestForDiscovery259ad2cc-f9ff-4c33-ad6d-10f5b3ff341a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AIME2025_-_Conf_Proc_-_STM_GNN_Predict.pdf
Size:
4.48 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.33 KB
Format:
Item-specific license agreed upon to submission
Description: