Publication
Point Cloud Geometry Scalable Coding Using a Resolution and Quality-Conditioned Latents Probability Estimator
datacite.subject.fos | Engenharia e Tecnologia | |
datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
dc.contributor.author | Mari, Daniele | |
dc.contributor.author | Guarda, André | |
dc.contributor.author | M. M. Rodrigues, Nuno | |
dc.contributor.author | Milani, Simone | |
dc.contributor.author | Pereira, Fernando | |
dc.date.accessioned | 2025-07-15T15:05:58Z | |
dc.date.available | 2025-07-15T15:05:58Z | |
dc.date.issued | 2025-06 | |
dc.date.updated | 2025-07-14T16:52:56Z | |
dc.description | Engineering controlled terms Binary sequences; Codes (symbols); Deep learning; Digital image storage; Learning systems; Multimedia systems; Scalability; Video signal processing | |
dc.description | Engineering uncontrolled terms 'current; Bitstreams; Cloud geometry; Deep learning-based codec; Geometry coding; JPEG pleno PCC; Point cloud geometry coding; Point-clouds; Probability estimator; Scalable coding | |
dc.description | Engineering main heading Scalable video coding | |
dc.description | Information and data sciences: https://www.it.pt/Publications/PaperConference/41189 | |
dc.description.abstract | In the current age, users consume multimedia content in very heterogeneous scenarios in terms of network, hardware, and display capabilities. A naive solution to this problem is to encode multiple independent streams, each covering a different possible requirement for the clients, with an obvious negative impact in both storage and computational requirements. These drawbacks can be avoided by using codecs that enable scalability, i.e., the ability to generate a progressive bitstream, containing a base layer followed by multiple enhancement layers, that allow decoding the same bitstream serving multiple reconstructions and visualization specifications. While scalable coding is a well-known and addressed feature in conventional image and video codecs, this paper focuses on a new and very different problem, notably the development of scalable coding solutions for deep learning-based Point Cloud (PC) coding. The peculiarities of this 3D representation make it hard to implement flexible solutions that do not compromise the other functionalities of the codec. This paper proposes a joint quality and resolution scalability scheme, named Scalable Resolution and Quality Hyperprior (SRQH), that, contrary to previous solutions, can model the relationship between latents obtained with models trained for different RD tradeoffs and/or at different resolutions. Experimental results obtained by integrating SRQH in the emerging JPEG Pleno learning-based PC coding standard show that SRQH allows decoding the PC at different qualities and resolutions with a single bitstream while incurring only in a limited RD penalty and increment in complexity w.r.t. non-scalable JPEG PCC that would require one bitstream per coding configuration. | eng |
dc.description.sponsorship | This work was funded in part by the European Union (EU) through the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, with a partnership on ‘‘Telecommunications of the Future’’ Program ‘‘RESearch and innovation on future Telecommunications systems and networks (Restart)’’ under Grant PE00000001; in part by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, entitled ‘‘Deep Learning-Based Point Cloud Representation,’’ under Project PTDC/EEI-COM/1125/2021; and in part by FCT/Ministério da Educação, Ciência e Inovação (MECI) through National Funds and when applicable co-funded EU Funds: Instituto de Telecomunicações under Grant UID/50008. The work of Daniele Mari was supported by Fondazione CaRiPaRo under Grant ‘‘Dottorati di Ricerca’’ 2021/2022. | |
dc.description.version | N/A | |
dc.identifier.citation | D. Mari, A. F. R. Guarda, N. M. M. Rodrigues, S. Milani and F. Pereira, "Point Cloud Geometry Scalable Coding Using a Resolution and Quality-Conditioned Latents Probability Estimator," in IEEE Access, vol. 13, pp. 108025-108042, 2025, doi: 10.1109/ACCESS.2025.3580680. | |
dc.identifier.doi | 10.1109/access.2025.3580680 | en_US |
dc.identifier.issn | 2169-3536 | en_US |
dc.identifier.slug | cv-prod-4528492 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/13656 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IEEE | |
dc.relation | Deep learning-based Point Cloud Representation | |
dc.relation | Instituto de Telecomunicações | |
dc.relation.hasversion | https://ieeexplore.ieee.org/document/11037781 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Point cloud geometry coding | |
dc.subject | JPEG Pleno PCC | |
dc.subject | deep learning-based codec | |
dc.subject | scalable coding | |
dc.title | Point Cloud Geometry Scalable Coding Using a Resolution and Quality-Conditioned Latents Probability Estimator | eng |
dc.type | journal article | en_US |
dspace.entity.type | Publication | |
oaire.awardTitle | Deep learning-based Point Cloud Representation | |
oaire.awardTitle | Instituto de Telecomunicações | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FEEI-COM%2F1125%2F2021/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50008%2F2019/PT | |
oaire.citation.endPage | 108042 | |
oaire.citation.startPage | 108025 | |
oaire.citation.title | IEEE Access | en_US |
oaire.citation.volume | 13 | en_US |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Guarda | |
person.familyName | M. M. Rodrigues | |
person.givenName | André | |
person.givenName | Nuno | |
person.identifier.ciencia-id | F811-146F-4EE9 | |
person.identifier.orcid | 0000-0001-5996-1074 | |
person.identifier.orcid | 0000-0001-9536-1017 | |
person.identifier.scopus-author-id | 7006052345 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.cv.cienciaid | 6917-B121-4E34 | NUNO MIGUEL MORAIS RODRIGUES | |
rcaap.rights | openAccess | en_US |
relation.isAuthorOfPublication | ab4d7e6e-b391-49ba-a618-a52fc62c8837 | |
relation.isAuthorOfPublication | b4ebe652-7f0e-4e67-adb0-d5ea29fc9e69 | |
relation.isAuthorOfPublication.latestForDiscovery | b4ebe652-7f0e-4e67-adb0-d5ea29fc9e69 | |
relation.isProjectOfPublication | a018adbc-131c-448f-acdc-fad90c525470 | |
relation.isProjectOfPublication | 8dd76ecc-a109-45e6-9fda-f72c712a17b9 | |
relation.isProjectOfPublication.latestForDiscovery | a018adbc-131c-448f-acdc-fad90c525470 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2025_06_Point_Cloud_Geometry_Scalable_Coding_Using_a_Resolution_and_Quality-Conditioned_Latents_Probability_Estimator.pdf
- Size:
- 2.84 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.33 KB
- Format:
- Item-specific license agreed upon to submission
- Description: