Repository logo
 
Publication

Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles

dc.contributor.authorFerreira, M.
dc.contributor.authorMorais, J.
dc.date.accessioned2024-07-22T09:19:42Z
dc.date.available2024-12-01T01:30:38Z
dc.date.issued2023-12
dc.descriptionAcknowledgments The work of M. Ferreira was supported by Portuguese funds through CIDMA-Center for Research and Development in Mathematics and Applications, and FCT – Fundação para a Ciência e a Tecnologia, within projects UIDB/04106/2020 and UIDP/04106/2020. The second author’s work was supported by the Asociación Mexicana de Cultura, A. C.pt_PT
dc.description.abstractThe present study introduces the two-sided and right-sided Quaternion Hyperbolic Fourier Transforms (QHFTs) for analyzing two-dimensional quaternion-valued signals defined in an open rectangle of the Euclidean plane endowed with a hyperbolic measure. The different forms of these transforms are defined by replacing the Euclidean plane waves with the corresponding hyperbolic plane waves in one dimension, giving the hyperbolic counterpart of the corresponding Euclidean Quaternion Fourier Transforms. Using hyperbolic geometry tools, we study the main operational and mapping properties of the QHFTs, such as linearity, shift, modulation, dilation, symmetry, inversion, and derivatives. Emphasis is placed on novel hyperbolic derivative and hyperbolic primitive concepts, which lead to the differentiation and integration properties of the QHFTs. We further prove the Riemann–Lebesgue Lemma and Parseval’s identity for the two-sided QHFT. Besides, we establish the Logarithmic, Heisenberg–Weyl, Donoho–Stark, and Benedicks’ uncertainty principles associated with the two-sided QHFT by invoking hyperbolic counterparts of the convolution, Pitt’s inequality, and the Poisson summation formula. This work is motivated by the potential applications of the QHFTs and the analysis of the corresponding hyperbolic quaternionic signals.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.citationFerreira, M., Morais, J. Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles. Complex Anal. Oper. Theory 18, 16 (2024). https://doi.org/10.1007/s11785-023-01451-8pt_PT
dc.identifier.doihttps://doi.org/10.1007/s11785-023-01451-8pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.8/9845
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationCenter for Research and Development in Mathematics and Applications
dc.relationCenter for Research and Development in Mathematics and Applications
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11785-023-01451-8pt_PT
dc.subjectQuaternion hyperbolic Fourier transformspt_PT
dc.subjectPlancherel and Parseval identitiespt_PT
dc.subjectRiemann-Lebesgue Lemmapt_PT
dc.subjectPitt's inequalitypt_PT
dc.subjectUncertainty principlespt_PT
dc.subjectHyperbolic Poisson summation formulapt_PT
dc.titleQuaternion Hyperbolic Fourier Transforms and Uncertainty Principlespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Research and Development in Mathematics and Applications
oaire.awardTitleCenter for Research and Development in Mathematics and Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04106%2F2020/PT
oaire.citation.endPage30pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleComplex Analysis and Operator Theorypt_PT
oaire.citation.volume18pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFerreira
person.givenNameMilton
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.orcid0000-0003-1816-8293
person.identifier.ridA-2004-2015
person.identifier.scopus-author-id12144179800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctEmbargo de 12 meses da revista, na versão Aceite em RI.pt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublication.latestForDiscoveryb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isProjectOfPublication198b0a26-89c6-4507-9459-313b8f692514
relation.isProjectOfPublication12b5a55f-76f1-4cab-b7e3-cb84215f36c1
relation.isProjectOfPublication.latestForDiscovery198b0a26-89c6-4507-9459-313b8f692514

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QHFT_Ferreira_Morais_2024.pdf
Size:
710.33 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: