Repository logo
 
Loading...
Thumbnail Image
Publication

PREVISÃO DE CURTO PRAZO PARA CONSUMO DE ENERGIA EM CAMPI UNIVERSITÁRIOS

Use this identifier to reference this record.

Abstract(s)

Diversas instituições de ensino têm vindo a instalar medidores inteligentes em diferentes edifícios dos seus campi, permitindo detalhar o consumo quase em tempo real, dotando essas organizações de significativos volumes de dados com valiosa informação do ponto de vista estratégico. O consumo de energia em campus universitário é impulsionado principalmente por vários fatores, como: ocupação, horário de funcionamento, tipo da edificação, idade da edificação, tipologia de equipamento instalado e condições climatéricas. Há ainda categorias diferentes: edifícios académicos, administrativos e edifícios residenciais. Nesse contexto, modelos estatísticos e modelos de aprendizagem computacional supervisionados desempenham um papel essencial, uma vez que permitem aplicar técnicas de previsão baseadas em dados históricos. Uma boa previsão do consumo de energia elétrica e de gás poderá viabilizar: a) O dimensionamento mais rigoroso de sistemas de produção fotovoltaica em regime de autoconsumo, procurando compatibilizar o consumo com a disponibilidade de produção fotovoltaica; b) Uma estimativa de encargos futuros com a energia elétrica; c) A adoção de planos de gestão de procura de energia, tentando induzir uma maior flexibilidade da procura em períodos mais críticos ou com maiores penalizações tarifárias. Portanto, a proposta deste trabalho assenta na modelação com base no comportamento de dados históricos e na otimização de parâmetros de redes neuronais para obter o mínimo de erro possível na previsão do consumo de energia elétrica do dia seguinte para o Campus 2 da Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria, incluindo a análise do desempenho dos modelos explorados. Foram testados diversos modelos estatísticos SARIMA/SARIMAX com validação cruzada, e modelos de Inteligência Artificial (IA), nomeadamente, k-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), redes neuronais, em particular, Multilayer Perceptron (MLP), redes Long Short-Term Memory (LSTM) e redes Gated Recurrent Unit (GRU) com diversas parametrizações e obtidos resultados com cada tipo de modelo, sendo visível que num significativo número deles foi possível obter um Mean Absolute Percentage Error (MAPE) abaixo dos 8%.

Description

Keywords

Previsão de Consumo de Energia Séries Temporais Modelos Estatísticos de Previsão Aprendizagem Computacional Redes Neuronais Artificiais

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

CC License