Repository logo
 
Publication

First and second fundamental solutions of the time-fractional telegraph equation of order 2α

dc.contributor.authorFerreira, Milton
dc.contributor.authorRodrigues, M. Manuela
dc.contributor.authorVieira, Nelson
dc.date.accessioned2019-02-06T16:05:36Z
dc.date.available2019-02-06T16:05:36Z
dc.date.issued2018-12-04
dc.description.abstractIn this work we obtain the first and second fundamental solutions of the multidimensional time-fractional equation of order 2α, α ∈]0, 1], where the two time-fractional derivatives are in the Caputo sense. We obtain representations of the fundamental solutions in terms of Hankel transform, double Mellin-Barnes integral, and H-functions of two variables. As an application, the fundamental solutions are used to solve a Cauchy problem and to study telegraph process with Brownian time.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationM. Ferreira, M. M. Rodrigues, and N. Vieira, First and second fundamental solutions of the time-fractional telegraph equation of order 2α, AIP Conference Proceedings ICNPAA 2018 World Congress, 2046, 020079 (2018)pt_PT
dc.identifier.doi10.1063/1.5081599pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.8/3802
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAIP Publishingpt_PT
dc.relation.publisherversionhttps://aip.scitation.org/doi/abs/10.1063/1.5081599pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectTime-fractional equationpt_PT
dc.subjectTelegraph equationpt_PT
dc.subjectDirac operatorpt_PT
dc.subjectCaputo fractional derivativept_PT
dc.subjectH-functionspt_PT
dc.subjectMultidimensional time-fractional equationpt_PT
dc.subjectMittag-Leffler functionspt_PT
dc.titleFirst and second fundamental solutions of the time-fractional telegraph equation of order 2αpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F04106%2F2013/PT
oaire.citation.conferencePlaceYerevan, Armeniapt_PT
oaire.citation.endPage020079-9pt_PT
oaire.citation.startPage020079-1pt_PT
oaire.citation.titleAIP Conference Proceedingspt_PT
oaire.citation.volume2046pt_PT
oaire.fundingStream5876
person.familyNameFerreira
person.familyNameRodrigues
person.familyNameVieira
person.givenNameMilton
person.givenNameM. Manuela
person.givenNameNelson
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.ciencia-id461D-A5E2-23BE
person.identifier.ciencia-id9418-DDFB-DE9D
person.identifier.orcid0000-0003-1816-8293
person.identifier.orcid0000-0002-8834-5841
person.identifier.orcid0000-0001-8756-4893
person.identifier.ridA-2004-2015
person.identifier.ridH-9130-2013
person.identifier.scopus-author-id12144179800
person.identifier.scopus-author-id22835991500
person.identifier.scopus-author-id55576073000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublication57767487-249d-4111-a6c5-a22fed15d8ea
relation.isAuthorOfPublicationf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isAuthorOfPublication.latestForDiscoveryb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isProjectOfPublicationd62eccf5-8596-4ba5-afab-f0f258cfd08e
relation.isProjectOfPublication.latestForDiscoveryd62eccf5-8596-4ba5-afab-f0f258cfd08e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FSFS_AIP_Conf_2018.pdf
Size:
361.1 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: