Name: | Description: | Size: | Format: | |
---|---|---|---|---|
56.32 MB | Adobe PDF |
Advisor(s)
Abstract(s)
This dissertation describes the development and implementation of techniques to enhance
the accuracy of low-complexity lters, making them suitable for remote control devices
in consumer electronics. The evolution veri ed in the last years, on multimedia contents,
available for consumers in Smart TVs and set-top-boxes, is not raising the expected
interest from users, and one of the pointed reasons for this nding is the user interface.
Although most current pointing devices rely on relative rotation increments, absolute
orientation allows for a more intuitive use and interaction. This possibility is explored in
this work as well as the interaction with multimedia contents through gestures.
Classical accurate fusion algorithms are computationally intensive, therefore their implementation
in low-energy consumption devices is a challenging task. To tackle this
problem, a performance study was carried, comparing a relevant set of professional commercial
of-the-shelf units, with the developed low-complexity lters in state-of-the-art
Magnetic, Angular Rate, Gravity (MARG) sensors. Part of the performance evaluation
tests are carried out under harsh conditions to observe the algorithms response in a nontrivial
environment. The results demonstrate that the implementation of low-complexity
lters using low-cost sensors, can provide an acceptable accuracy in comparison with the
more complex units/ lters. These results pave the way for faster adoption of absolute
orientation-based pointing devices in interactive multimedia applications, which includes
hand-held, battery-operated devices.
Description
Keywords
Remote Control Devices Complementary Filters Kalman Filters Consumer Electronics MARG sensors Inertial Measurement Units