Repository logo
 
Publication

Light Field Image Coding Based on Hybrid Data Representation

dc.contributor.authorMonteiro, Ricardo J. S.
dc.contributor.authorRodrigues, Nuno M. M.
dc.contributor.authorFaria, Sérgio M.M.
dc.contributor.authorNunes, Paulo J. L.
dc.date.accessioned2022-11-10T14:40:18Z
dc.date.available2022-11-10T14:40:18Z
dc.date.issued2020-07-02
dc.date.updated2022-11-08T17:29:00Z
dc.description.abstractThis paper proposes a novel efficient light field coding approach based on a hybrid data representation. Current state-of-the-art light field coding solutions either operate on micro-images or sub-aperture images. Consequently, the intrinsic redundancy that exists in light field images is not fully exploited, as is demonstrated. This novel hybrid data representation approach allows to simultaneously exploit four types of redundancies: i) sub-aperture image intra spatial redundancy, ii) sub-aperture image inter-view redundancy, iii) intra-micro-image redundancy, and iv) inter-micro-image redundancy between neighboring micro-images. The proposed light field coding solution allows flexibility for several types of baselines, by adaptively exploiting the most predominant type of redundancy on a coding block basis. To demonstrate the efficiency of using a hybrid representation, this paper proposes a set of efficient pixel prediction methods combined with a pseudo-video sequence coding approach, based on the HEVC standard. Experimental results show consistent average bitrate savings when the proposed codec is compared to relevant state-ofthe-art benchmarks. For lenslet light field content, the proposed coding algorithm outperforms the HEVCbased pseudo-video sequence coding benchmark by an average bitrate savings of 23%. It is shown for the same light field content that the proposed solution outperforms JPEG Pleno verification models MuLE and WaSP, as these codecs are only able to achieve 11% and −14% bitrate savings over the same HEVC-based benchmark, respectively. The performance of the proposed coding approach is also validated for light fields with wider baselines, captured with high-density camera arrays, being able to outperform both the HEVCbased benchmark, as well as MuLE and WaSP.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationR. J. S. Monteiro, N. M. M. Rodrigues, S. M. M. Faria and P. J. L. Nunes, "Light Field Image Coding Based on Hybrid Data Representation," in IEEE Access, vol. 8, pp. 115728-115744, 2020, doi: 10.1109/ACCESS.2020.3004625.pt_PT
dc.identifier.doi10.1109/access.2020.3004625pt_PT
dc.identifier.eissn2169-3536
dc.identifier.slugcv-prod-2105689
dc.identifier.urihttp://hdl.handle.net/10400.8/7844
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationUIDB/EEA/50008/2020
dc.relationScalable Light Field Representation and Coding for Immersive Systems
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9123762pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLight field representationpt_PT
dc.subjectLight field image codingpt_PT
dc.subjectHEVCpt_PT
dc.subjectPseudo-video sequencept_PT
dc.subjectSpatialpt_PT
dc.subjectPixel predictionpt_PT
dc.subjectLeast squares predictionpt_PT
dc.titleLight Field Image Coding Based on Hybrid Data Representationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleScalable Light Field Representation and Coding for Immersive Systems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F136953%2F2018/PT
oaire.citation.endPage115744pt_PT
oaire.citation.startPage115728pt_PT
oaire.citation.titleIEEE Accesspt_PT
oaire.citation.volume8pt_PT
oaire.fundingStreamOE
person.familyNameM. M. Rodrigues
person.familyNameFaria
person.givenNameNuno
person.givenNameSergio
person.identifier.ciencia-id8815-4101-28DD
person.identifier.orcid0000-0001-9536-1017
person.identifier.orcid0000-0002-0993-9124
person.identifier.ridC-5245-2011
person.identifier.scopus-author-id7006052345
person.identifier.scopus-author-id14027853900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.cv.cienciaid6917-B121-4E34 | NUNO MIGUEL MORAIS RODRIGUES
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isAuthorOfPublicationf69bd4d6-a6ef-4d20-8148-575478909661
relation.isAuthorOfPublication.latestForDiscoveryb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isProjectOfPublication2dd2e18b-2b7c-41d5-84d6-42e2a5ba7da0
relation.isProjectOfPublication.latestForDiscovery2dd2e18b-2b7c-41d5-84d6-42e2a5ba7da0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020_Light_Field_Image_Coding_Based_on_Hybrid_Data_Representation.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.33 KB
Format:
Item-specific license agreed upon to submission
Description: