Repository logo
 
Publication

The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations

dc.contributor.authorMartins-Ferreira, Nelson
dc.contributor.authorMontoli, Andrea
dc.contributor.authorSobral, Manuela
dc.date.accessioned2023-05-26T13:41:25Z
dc.date.available2023-05-26T13:41:25Z
dc.date.issued2018-08-10
dc.descriptionAcknowledgements: We wish to express our gratitude to Alex Patchkoria for pointing out to us the existence of some old literature, of not easy access, related to the subject of this paper. This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, by ESTG and CDRSP from the Polytechnical Institute of Leiria – UID/Multi/04044/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. This work was partially supported by the Programma per Giovani Ricercatori “Rita Levi-Montalcini”, Funded by the Italian government through MIUR.pt_PT
dc.description.abstractWe show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMartins-Ferreira, N., Montoli, A. & Sobral, M. The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations. Semigroup Forum 97, 325–352 (2018). https://doi.org/10.1007/s00233-018-9962-1pt_PT
dc.identifier.doihttps://doi.org/10.1007/s00233-018-9962-1pt_PT
dc.identifier.issn1432-2137
dc.identifier.urihttp://hdl.handle.net/10400.8/8523
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationCenter for Mathematics, University of Coimbra
dc.relationCentre for Rapid and Sustainable Product Development
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00233-018-9962-1pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMonoids with operationspt_PT
dc.subjectSpecial Schreier extensionpt_PT
dc.subjectNine Lemmapt_PT
dc.subjectPush forwardpt_PT
dc.subjectBaer sumpt_PT
dc.titleThe Nine Lemma and the push forward construction for special Schreier extensions of monoids with operationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Mathematics, University of Coimbra
oaire.awardTitleCentre for Rapid and Sustainable Product Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00324%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMulti%2F04044%2F2013/PT
oaire.citation.endPage352pt_PT
oaire.citation.startPage325pt_PT
oaire.citation.titleSemigroup Forumpt_PT
oaire.citation.volume97pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMartins-Ferreira
person.givenNameNelson
person.identifier485301
person.identifier.ciencia-idB115-B65E-24AA
person.identifier.orcid0000-0002-4199-7367
person.identifier.ridN-1699-2013
person.identifier.scopus-author-id24598020700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication52406f6a-2c36-4e9a-9996-d3cc719d46bf
relation.isAuthorOfPublication.latestForDiscovery52406f6a-2c36-4e9a-9996-d3cc719d46bf
relation.isProjectOfPublicationb30d7802-d73a-400a-9dca-e837e0b3d33e
relation.isProjectOfPublication9c625981-b187-4078-8cb2-d84b0d21a477
relation.isProjectOfPublication.latestForDiscoveryb30d7802-d73a-400a-9dca-e837e0b3d33e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
16 - Martins-Ferreira et al_2018_ The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations.pdf
Size:
530.24 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: