Publication
Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm
dc.contributor.author | Bernardino, Eugénia M. | |
dc.contributor.author | Bernardino, Anabela M. | |
dc.contributor.author | Sánchez-Pérez, Juan M. | |
dc.contributor.author | Gómez-Pulido, Juan A. | |
dc.contributor.author | Vega-Rodríguez, Miguel A. | |
dc.contributor.author | Bernardino, Eugénia | |
dc.contributor.author | Moreira Bernardino, Anabela | |
dc.date.accessioned | 2025-04-21T14:23:33Z | |
dc.date.available | 2025-04-21T14:23:33Z | |
dc.date.issued | 2009 | |
dc.description | International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008) | |
dc.description.abstract | Terminal assignment is an important issue in telecommunication networks optimization. The task here is to assign a given collection of terminals to a given collection of concentrators. The main objective is to minimize the link cost to form a network. This optimization task is an NP-complete problem. The intractability of this problem is a motivation for the pursuits of a local search genetic algorithm that produces approximate, rather than exact, solutions. In this paper, we explore one of the most successful emerging ideas combining local search with population-based search. Simulation results verify the effectiveness of the proposed method. The results show that our algorithm provides good solutions in a better running time. | eng |
dc.identifier.citation | Bernardino, E.M., Bernardino, A.M., Sánchez-Pérez, J.M., Gómez-Pulido, J.A., Vega-Rodríguez, M.A. (2009). Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_27. | |
dc.identifier.doi | 10.1007/978-3-540-85863-8_27 | |
dc.identifier.isbn | 978-3-540-85862-1 | |
dc.identifier.isbn | 978-3-540-85863-8 | |
dc.identifier.issn | 1615-3871 | |
dc.identifier.issn | 1860-0794 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/12820 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Springer Berlin Heidelberg | |
dc.relation.hasversion | https://link.springer.com/chapter/10.1007/978-3-540-85863-8_27 | |
dc.relation.ispartof | Advances in Soft Computing | |
dc.relation.ispartof | International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008) | |
dc.rights.uri | N/A | |
dc.subject | Terminal Assignment Problem | |
dc.subject | Genetic Algorithm | |
dc.subject | Local Search Algorithm | |
dc.title | Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm | eng |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | 2008 | |
oaire.citation.endPage | 234 | |
oaire.citation.startPage | 225 | |
oaire.citation.title | Advances in Soft Computing | |
oaire.citation.volume | 50 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Bernardino | |
person.familyName | Moreira Bernardino | |
person.givenName | Eugénia | |
person.givenName | Anabela | |
person.identifier.ciencia-id | 9616-F1BC-D8BD | |
person.identifier.ciencia-id | 081E-F3B8-316A | |
person.identifier.orcid | 0000-0001-5301-5853 | |
person.identifier.orcid | 0000-0002-6561-5730 | |
person.identifier.scopus-author-id | 24402754700 | |
relation.isAuthorOfPublication | 893cf15c-eff8-4e43-949c-c1de6eb87599 | |
relation.isAuthorOfPublication | 375ebe15-f84c-46a4-a3d9-6e4935a92187 | |
relation.isAuthorOfPublication.latestForDiscovery | 893cf15c-eff8-4e43-949c-c1de6eb87599 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Solving the terminal assignment problem using a local search genetic algorithm.pdf
- Size:
- 231.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- Terminal assignment is an important issue in telecommunication networks optimization. The task here is to assign a given collection of terminals to a given collection of concentrators. The main objective is to minimize the link cost to form a network. This optimization task is an NP-complete problem. The intractability of this problem is a motivation for the pursuits of a local search genetic algorithm that produces approximate, rather than exact, solutions. In this paper, we explore one of the most successful emerging ideas combining local search with population-based search. Simulation results verify the effectiveness of the proposed method. The results show that our algorithm provides good solutions in a better running time.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: