Logo do repositório
 
Publicação

The fractal Dirichlet Laplacian

dc.contributor.authorCaetano, António M.
dc.contributor.authorLopes, Sofia
dc.date.accessioned2026-01-19T11:19:19Z
dc.date.available2026-01-19T11:19:19Z
dc.date.issued2010-04-09
dc.description.abstractAn h-set is a non-empty compact subset of the Euclidean n-space which supports a finite Radon measure for which the measure of balls centered on the subset is essentially given by the image of their radius by a suitable function h. In most cases of interest such a subset has Lebesgue measure zero and has a fractal structure. We prove the existence of solutions for the so-called fractal Dirichlet problem for such h-sets. The “construction” of the solutions is based on the consideration of complete o.n. systems for convenient function spaces on the fractals. These systems are obtained combining properties of traces with integral representations (obtained with the help of Green’s functions) for the so-called fractal Laplacian.eng
dc.description.sponsorshipThe authors would like to thank Prof. Hans Triebel for his valuable suggestions and for the fruitful discussions during the preparation of this paper. This research was partially supported by Unidade de Investigação Matemática e Aplicações of Uni versidade de Aveiro through Programa Operacional ‘Ciência, Tecnologia, Inovação’ (POCTI) of FCT, cofinanced by the European Community Fund (FEDER).
dc.identifier.citationCaetano, A.M., Lopes, S. The fractal Dirichlet Laplacian. Rev Mat Complut 24, 189–209 (2011). https://doi.org/10.1007/s13163-010-0035-6
dc.identifier.doi10.1007/s13163-010-0035-6
dc.identifier.issn1139-1138
dc.identifier.issn1988-2807
dc.identifier.urihttp://hdl.handle.net/10400.8/15389
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Science and Business Media LLC
dc.relation.hasversionhttps://link.springer.com/article/10.1007/s13163-010-0035-6
dc.relation.ispartofRevista Matemática Complutense
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTraces
dc.subjecth-sets ·
dc.subjectLaplacian ·
dc.subjectDirichlet problem ·
dc.subjectFunction spaces ·
dc.subjectFractals ·
dc.titleThe fractal Dirichlet Laplacianeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage209
oaire.citation.issue1
oaire.citation.startPage189
oaire.citation.titleRevista Matematica Complutense
oaire.citation.volume24
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
186.pdf
Tamanho:
535.81 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.32 KB
Formato:
Item-specific license agreed upon to submission
Descrição: