Repository logo
 
Publication

Application of the Fractional Sturm–Liouville Theory to a Fractional Sturm–Liouville Telegraph Equation

dc.contributor.authorFerreira, M.
dc.contributor.authorRodrigues, M. Manuela
dc.contributor.authorVieira, Nelson
dc.date.accessioned2022-08-05T13:47:10Z
dc.date.available2022-08-05T13:47:10Z
dc.date.issued2021-06-10
dc.description.abstractIn this paper, we consider a non-homogeneous time-space-fractional telegraph equation in n-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper, some illustrative examples are presented.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira, M., Rodrigues, M.M., and Vieira, N., Application of the Fractional Sturm-Liouville Theory to a Fractional Sturm-Liouville Telegraph Equation. Complex Analysis and Operator Theory 15(5), Article ID: 87, 2021pt_PT
dc.identifier.doi10.1007/s11785-021-01125-3pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.8/7511
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationCenter for Research and Development in Mathematics and Applications
dc.relation.ispartofseries87;
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11785-021-01125-3pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCaputo fractional derivativespt_PT
dc.subjectRiemann-Liouville fractional derivativespt_PT
dc.subjectFractional Sturm-Liouville operatorpt_PT
dc.subjectTime-space-fractional telegraph equationpt_PT
dc.subjectMittag-Leffler functionspt_PT
dc.subjectWright functionspt_PT
dc.titleApplication of the Fractional Sturm–Liouville Theory to a Fractional Sturm–Liouville Telegraph Equationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Research and Development in Mathematics and Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT
oaire.citation.endPage36pt_PT
oaire.citation.issue5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleComplex Analysis and Operator Theorypt_PT
oaire.citation.volume15pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFerreira
person.familyNameRodrigues
person.familyNameVieira
person.givenNameMilton
person.givenNameM. Manuela
person.givenNameNelson
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.ciencia-id461D-A5E2-23BE
person.identifier.ciencia-id9418-DDFB-DE9D
person.identifier.orcid0000-0003-1816-8293
person.identifier.orcid0000-0002-8834-5841
person.identifier.orcid0000-0001-8756-4893
person.identifier.ridA-2004-2015
person.identifier.ridH-9130-2013
person.identifier.scopus-author-id12144179800
person.identifier.scopus-author-id22835991500
person.identifier.scopus-author-id55576073000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublication57767487-249d-4111-a6c5-a22fed15d8ea
relation.isAuthorOfPublicationf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isAuthorOfPublication.latestForDiscoveryf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isProjectOfPublication198b0a26-89c6-4507-9459-313b8f692514
relation.isProjectOfPublication.latestForDiscovery198b0a26-89c6-4507-9459-313b8f692514

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fract_Sturm_Liouville_telegraph_equation_Post_Print.pdf
Size:
515.36 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: