Publication
Application of the Fractional Sturm–Liouville Theory to a Fractional Sturm–Liouville Telegraph Equation
dc.contributor.author | Ferreira, M. | |
dc.contributor.author | Rodrigues, M. Manuela | |
dc.contributor.author | Vieira, Nelson | |
dc.date.accessioned | 2022-08-05T13:47:10Z | |
dc.date.available | 2022-08-05T13:47:10Z | |
dc.date.issued | 2021-06-10 | |
dc.description.abstract | In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in n-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper, some illustrative examples are presented. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Ferreira, M., Rodrigues, M.M., and Vieira, N., Application of the Fractional Sturm-Liouville Theory to a Fractional Sturm-Liouville Telegraph Equation. Complex Analysis and Operator Theory 15(5), Article ID: 87, 2021 | pt_PT |
dc.identifier.doi | 10.1007/s11785-021-01125-3 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.8/7511 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation | Center for Research and Development in Mathematics and Applications | |
dc.relation.ispartofseries | 87; | |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11785-021-01125-3 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Caputo fractional derivatives | pt_PT |
dc.subject | Riemann-Liouville fractional derivatives | pt_PT |
dc.subject | Fractional Sturm-Liouville operator | pt_PT |
dc.subject | Time-space-fractional telegraph equation | pt_PT |
dc.subject | Mittag-Leffler functions | pt_PT |
dc.subject | Wright functions | pt_PT |
dc.title | Application of the Fractional Sturm–Liouville Theory to a Fractional Sturm–Liouville Telegraph Equation | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Research and Development in Mathematics and Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT | |
oaire.citation.endPage | 36 | pt_PT |
oaire.citation.issue | 5 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | Complex Analysis and Operator Theory | pt_PT |
oaire.citation.volume | 15 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Ferreira | |
person.familyName | Rodrigues | |
person.familyName | Vieira | |
person.givenName | Milton | |
person.givenName | M. Manuela | |
person.givenName | Nelson | |
person.identifier.ciencia-id | CA19-2009-F26D | |
person.identifier.ciencia-id | 461D-A5E2-23BE | |
person.identifier.ciencia-id | 9418-DDFB-DE9D | |
person.identifier.orcid | 0000-0003-1816-8293 | |
person.identifier.orcid | 0000-0002-8834-5841 | |
person.identifier.orcid | 0000-0001-8756-4893 | |
person.identifier.rid | A-2004-2015 | |
person.identifier.rid | H-9130-2013 | |
person.identifier.scopus-author-id | 12144179800 | |
person.identifier.scopus-author-id | 22835991500 | |
person.identifier.scopus-author-id | 55576073000 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | b1460cdc-4ced-46c6-a637-68b425d104dc | |
relation.isAuthorOfPublication | 57767487-249d-4111-a6c5-a22fed15d8ea | |
relation.isAuthorOfPublication | f530f82c-8351-4c64-a33e-4c34fe4ac22a | |
relation.isAuthorOfPublication.latestForDiscovery | f530f82c-8351-4c64-a33e-4c34fe4ac22a | |
relation.isProjectOfPublication | 198b0a26-89c6-4507-9459-313b8f692514 | |
relation.isProjectOfPublication.latestForDiscovery | 198b0a26-89c6-4507-9459-313b8f692514 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Fract_Sturm_Liouville_telegraph_equation_Post_Print.pdf
- Size:
- 515.36 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: