Publication
Matrix interpretation of multiple orthogonality
| datacite.subject.fos | Ciências Naturais::Matemáticas | |
| datacite.subject.sdg | 03:Saúde de Qualidade | |
| datacite.subject.sdg | 07:Energias Renováveis e Acessíveis | |
| datacite.subject.sdg | 11:Cidades e Comunidades Sustentáveis | |
| dc.contributor.author | Branquinho, A. | |
| dc.contributor.author | Cotrim, L. | |
| dc.contributor.author | Moreno, A. Foulquié | |
| dc.date.accessioned | 2025-11-26T11:53:12Z | |
| dc.date.available | 2025-11-26T11:53:12Z | |
| dc.date.issued | 2009-12-18 | |
| dc.description | Fonte: https://www.researchgate.net/publication/220393901_Matrix_interpretation_of_multiple_orthogonality | |
| dc.description.abstract | In this work we give an interpretation of a (s (d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials. We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions. We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite-Padé approximation in matrix form is given. | eng |
| dc.identifier.citation | Branquinho, A., Cotrim, L. & Foulquié Moreno, A. Matrix interpretation of multiple orthogonality. Numer Algor 55, 19–37 (2010). https://doi.org/10.1007/s11075-009-9355-3. | |
| dc.identifier.doi | 10.1007/s11075-009-9355-3 | |
| dc.identifier.eissn | 1572-9265 | |
| dc.identifier.issn | 1017-1398 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/14735 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Springer Nature | |
| dc.relation.hasversion | https://link.springer.com/article/10.1007/s11075-009-9355-3 | |
| dc.relation.ispartof | Numerical Algorithms | |
| dc.rights.uri | N/A | |
| dc.subject | Multiple-orthogonal polynomials | |
| dc.subject | Hermite-Pad´e approximants | |
| dc.subject | block tridiagonal operator | |
| dc.subject | Favard type theorem | |
| dc.title | Matrix interpretation of multiple orthogonality | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.citation.endPage | 24 | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Numerical Algorithms | |
| oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| person.familyName | Cotrim | |
| person.givenName | Luís | |
| person.identifier.ciencia-id | F51A-C52D-D5CE | |
| person.identifier.orcid | 0000-0001-9256-9349 | |
| person.identifier.scopus-author-id | 35221310400 | |
| relation.isAuthorOfPublication | 91b93ea6-95cd-4f37-8e29-a6d0f31a397a | |
| relation.isAuthorOfPublication.latestForDiscovery | 91b93ea6-95cd-4f37-8e29-a6d0f31a397a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Matrix interpretation of multiple orthogonality.pdf
- Size:
- 223.48 KB
- Format:
- Adobe Portable Document Format
- Description:
- In this work we give an interpretation of a (s (d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials. We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions. We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite-Padé approximation in matrix form is given.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
