Repository logo
 
Publication

A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification

dc.contributor.authorBasto-Fernandes, Vitor
dc.contributor.authorYevseyeva, Iryna
dc.contributor.authorMéndez, José R.
dc.contributor.authorZhao, Jiaqi
dc.contributor.authorFdez-Riverola, Florentino
dc.contributor.authorEmmerich, Michael T.M.
dc.date.accessioned2025-05-27T10:04:00Z
dc.date.available2025-05-27T10:04:00Z
dc.date.issued2016-11
dc.description.abstractClassifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multiobjective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain.eng
dc.description.sponsorshipThis work has been partially funded by the [14VI05] Contract-Programme from the University of Vigo. SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from University of Vigo for hosting its IT infrastructure. The authors would like to thank Pu Wang for sharing the code of CH-MOGP.
dc.identifier.citationVitor Basto-Fernandes, Iryna Yevseyeva, José R. Méndez, Jiaqi Zhao, Florentino Fdez-Riverola, Michael T.M. Emmerich, A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification, Applied Soft Computing, Volume 48, 2016, Pages 111-123, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2016.06.043.
dc.identifier.doi10.1016/j.asoc.2016.06.043
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/10400.8/12998
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier BV
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/abs/pii/S1568494616303234
dc.relation.ispartofApplied Soft Computing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSpam filtering
dc.subjectMulti-objective optimization
dc.subjectParsimony
dc.subjectThree-way classification
dc.subjectRule-based classifiers
dc.subjectSpamAssassin
dc.titleA spam filtering multi-objective optimization study covering parsimony maximization and three-way classificationeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage123
oaire.citation.startPage111
oaire.citation.titleApplied Soft Computing
oaire.citation.volume48
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameBasto-Fernandes
person.givenNameVitor
person.identifier.ciencia-id581C-52BB-AC4E
person.identifier.orcid0000-0003-4269-5114
person.identifier.ridN-1891-2016
person.identifier.scopus-author-id53363129900
relation.isAuthorOfPublicationfb2d3703-9d6a-4c22-bbc4-9ff14c162feb
relation.isAuthorOfPublication.latestForDiscoveryfb2d3703-9d6a-4c22-bbc4-9ff14c162feb

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494616303234-mainext.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: