Publication
A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification
dc.contributor.author | Basto-Fernandes, Vitor | |
dc.contributor.author | Yevseyeva, Iryna | |
dc.contributor.author | Méndez, José R. | |
dc.contributor.author | Zhao, Jiaqi | |
dc.contributor.author | Fdez-Riverola, Florentino | |
dc.contributor.author | Emmerich, Michael T.M. | |
dc.date.accessioned | 2025-05-27T10:04:00Z | |
dc.date.available | 2025-05-27T10:04:00Z | |
dc.date.issued | 2016-11 | |
dc.description.abstract | Classifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multiobjective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain. | eng |
dc.description.sponsorship | This work has been partially funded by the [14VI05] Contract-Programme from the University of Vigo. SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from University of Vigo for hosting its IT infrastructure. The authors would like to thank Pu Wang for sharing the code of CH-MOGP. | |
dc.identifier.citation | Vitor Basto-Fernandes, Iryna Yevseyeva, José R. Méndez, Jiaqi Zhao, Florentino Fdez-Riverola, Michael T.M. Emmerich, A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification, Applied Soft Computing, Volume 48, 2016, Pages 111-123, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2016.06.043. | |
dc.identifier.doi | 10.1016/j.asoc.2016.06.043 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/12998 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Elsevier BV | |
dc.relation.hasversion | https://www.sciencedirect.com/science/article/abs/pii/S1568494616303234 | |
dc.relation.ispartof | Applied Soft Computing | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Spam filtering | |
dc.subject | Multi-objective optimization | |
dc.subject | Parsimony | |
dc.subject | Three-way classification | |
dc.subject | Rule-based classifiers | |
dc.subject | SpamAssassin | |
dc.title | A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 123 | |
oaire.citation.startPage | 111 | |
oaire.citation.title | Applied Soft Computing | |
oaire.citation.volume | 48 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Basto-Fernandes | |
person.givenName | Vitor | |
person.identifier.ciencia-id | 581C-52BB-AC4E | |
person.identifier.orcid | 0000-0003-4269-5114 | |
person.identifier.rid | N-1891-2016 | |
person.identifier.scopus-author-id | 53363129900 | |
relation.isAuthorOfPublication | fb2d3703-9d6a-4c22-bbc4-9ff14c162feb | |
relation.isAuthorOfPublication.latestForDiscovery | fb2d3703-9d6a-4c22-bbc4-9ff14c162feb |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1-s2.0-S1568494616303234-mainext.pdf
- Size:
- 1.98 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: