Logo do repositório
 
A carregar...
Miniatura
Publicação

A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
1-s2.0-S1568494616303234-mainext.pdf1.98 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Classifier performance optimization in machine learning can be stated as a multi-objective optimization problem. In this context, recent works have shown the utility of simple evolutionary multi-objective algorithms (NSGA-II, SPEA2) to conveniently optimize the global performance of different anti-spam filters. The present work extends existing contributions in the spam filtering domain by using three novel indicator-based (SMS-EMOA, CH-EMOA) and decomposition-based (MOEA/D) evolutionary multiobjective algorithms. The proposed approaches are used to optimize the performance of a heterogeneous ensemble of classifiers into two different but complementary scenarios: parsimony maximization and e-mail classification under low confidence level. Experimental results using a publicly available standard corpus allowed us to identify interesting conclusions regarding both the utility of rule-based classification filters and the appropriateness of a three-way classification system in the spam filtering domain.

Descrição

Palavras-chave

Spam filtering Multi-objective optimization Parsimony Three-way classification Rule-based classifiers SpamAssassin

Contexto Educativo

Citação

Vitor Basto-Fernandes, Iryna Yevseyeva, José R. Méndez, Jiaqi Zhao, Florentino Fdez-Riverola, Michael T.M. Emmerich, A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification, Applied Soft Computing, Volume 48, 2016, Pages 111-123, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2016.06.043.

Projetos de investigação

Unidades organizacionais

Fascículo