Loading...
Research Project
CNC. IBILI
Funder
Authors
Publications
Secondary metabolites (essential oils) from sand-dune plants induce cytotoxic effects in cancer cells
Publication . Beeby, Ellie; Magalhães, Mariana; Poças, Juliana; Collins, Thomas; Lemos, Marco F.L.; Barros, Lillian; Ferreira, Isabel C.F.R.; Cabral, Célia; Pires, Isabel M.
Ethnopharmacological relevance: Despite advances in modern therapeutic strategies, cancer remains the second leading cause of death worldwide. Therefore, there is a constant need to develop more efficient anticancer targeting strategies. The anticancer therapeutic proprieties of medicinal plants and their bioactive compounds have been reported for several years, making natural extracts and/or compounds derived from these a promising source of novel anticancer agents. Sand dune plants are subjected to severe environmental stresses, leading to the development of adaptations, including the production of secondary metabolites with a wide range of bioactivities, such as: anti-inflammatory, analgesic, antiseptic, hypoglycaemic, hypotensive, antinociceptive, antioxidant and anticancer.
Aim of the study: The anticancer potential of sand dune plants remains under-investigated, so this research describes the characterisation of the composition of bioactive EOs from sand-dune plants of Peniche (Portugal), and assessment of their activity in vitro and potential mechanism of action.
Materials and methods: EOs were extracted from six sand-dune species of plants from Peniche sand dunes: Crithmum maritimum L., Seseli tortuosum L., Artemisia campestris subsp. maritima (DC.) Arcang., Juniperus phoenicea var. turbinata (Guss.) Parl., Otanthus maritimus (L.) Hoffmanns. & Link, and Eryngium maritimum L.. EOs composition was fully characterised chemically using Gas Chromatography-Mass Spectrometry (GC-MS). The assessment of anticancer activity and mechanism of action was performed in vitro using breast and colorectal cancer 2D and 3D spheroid cell line models, through cell proliferation assay, western blotting analysis, and cell cycle analysis.
Results: EOs from the majority of the species tested (S. tortuosum, A. campestris subsp. maritima, O. maritimus, and E. maritimum) were mainly composed by hydrocarbon compounds (sequisterpenes and monoterpenes), showing antiproliferative activity in both 2D and 3D models. EO extracted from S. tortuosum and O. maritimus were identified as having the lowest IC50 values for both cell lines when compared with the other species tested. Furthermore, this antiproliferative activity was associated with increased p21 expression and induction of apoptosis.
Conclusions: The present study suggests that EOs extracted from S. tortuosum and O. maritimus present promising cytotoxic properties. Further evaluation of the extracts and their key components as potential anticancer agents should therefore be explored.
Inflammatory cells proliferate in the choroid and retina without choroidal thickness change in early Type 1 diabetes
Publication . Campos, António; Campos, Elisa J.; Martins, João; Rodrigues, Flávia S.C.; Silva, Rufino; Ambrósio, António Francisco
Increasing evidence points to inflammation as a key factor in the pathogenesis of diabetic retinopathy (DR). Choroidal inflammatory changes in diabetes have been reported and in vivo choroidal thickness (CT) has been searched as a marker of retinopathy with contradictory results. We aimed to investigate the early stages in the retina and choroid in an animal model of Type 1 diabetes. Type 1 diabetes was induced in male Wistar rats via a single i.p. streptozotocin injection. At 8 weeks after disease onset, CT, choroidal vascular density, VEGF and VEGFR2 expression, microglial cell and pericyte distribution were evaluated. Diabetic rats showed no significant change in CT and choroidal vascular density. A widened pericyte-free gap between the retinal pigment epithelium and the choroid was observed in diabetic rats. The immunoreactivity of VEGFR2 was decreased in the retina of diabetic rats, despite no statistically significant difference in the immunoreactivity of VEGF. The density of microglial cells significantly increased in the choroid and retina of diabetic rats. Reactive microglial cells were found to be more abundant in the choroid of diabetic rats. Evidences of the interconnection between the superficial, intermediate, and deep plexuses of the retina were also observed. At early stages, Type 1 diabetes does not affect choroidal thickness and choroidal vascular density. Proliferation and reactivity of microglial cells occurs in the choroidal stroma and the retina. The expression of VEGFR2 decreases in the retina.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UID/NEU/04539/2013