Loading...
Research Project
PROJECTO INTELIGENTE DE SCAFFOLDS OBTIDOS POR PROTOTIPAGEM RÁPIDA
Funder
Authors
Publications
Biomanufacturing for tissue engineering: Present and future trends
Publication . Bartolo, Paulo; Chua, C. K.; Almeida, Henrique de Amorim; Chou, S. M.; Lim, A. S. C.
Tissue engineering, often referred to as regenerative medicine and reparative medicine, is an interdisciplinary field that necessitates the combined effort of cell biologists, engineers, material scientists, mathematicians, geneticists, and clinicians toward the development of biological substitutes that restore, maintain, or improve tissue function. It has emerged as a rapidly expanding approach to address the organ shortage problem and comprises tissue regeneration and organ substitution. Cells placed on/or within constructs is the most common strategy in tissue engineering. Successful cell seeding depends on fast attachment of cell to scaffolds, high cell survival and uniform cell distribution. The seeding time is strongly dependent on the scaffold material and architecture. Scaffolds provide an initial biochemical substrate for the novel tissue until cells can produce their own extra-cellular matrix (ECM). Thus scaffolds not only define the 3D space for the formation of new tissues, but also serve to provide tissues with appropriate functions. These scaffolds are often critical, both in vivo (within the body) or in vitro (outside the body) mimicking in vivo conditions. Additive fabrication processes represent a new group of non-conventional fabrication techniques recently introduced in the biomedical engineering field. In tissue engineering, additive fabrication processes have been used to produce scaffolds with customised external shape and predefined internal morphology, allowing good control of pore size and pore distribution. This article provides a comprehensive state-of-the-art review of the application of biomanufacturing additive processes in the field of tissue engineering. New and moving trends in biomanufacturing technologies and the concept of direct cell-printing technologies are also discussed.
Numerical Calculations in Tissue Engineering
Publication . Almeida, Henrique de Amorim; Bártolo, Paulo J.
The design of optimized scaffolds for tissue engineering is a key topic of research, as the complex macro- and micro- architectures required for a scaffold depends not only on the mechanical properties, but also on the physical and molecular queues of the surrounding tissue within the defect site. Thus, the prediction of optimal features for tissue engineering scaffolds is very important for its mechanical, vascular or topological properties. The relationship between high scaffold porosity and high mechanical properties is contradictory, as it becomes even more complex due to the scaffold degradation process. A scaffold design strategy was developed, based on the finite element method, to optimise the scaffold design regarding the mechanical and vascular properties as a function of porosity. Scaffolds can be considered as a LEGO structure formed by an association of small elementary units or blocks. In this research work, two types of family elementary scaffold units were considered: non-triple periodic minimal surfaces and triple periodic minimal surfaces that describe natural existing surfaces. The main objective of this work is to present the undergoing research based on numerical simulations for the evaluation and prediction of the scaffold's behaviour under structural and vascular loading, and its topological optimisation.
Organizational Units
Description
Keywords
, Engineering and technology ,Engineering and technology/Mechanical engineering
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia, I.P.
Fundação para a Ciência e a Tecnologia, I.P.
Fundação para a Ciência e a Tecnologia, I.P.
Funding programme
PIDDAC
Funding Award Number
SFRH/BD/37604/2007