Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Sem título

Autores

Publicações

Multi-material cellular structured orthopedic implants design: In vitro and bio-tribological performance
Publication . Costa, M.M.; Lima, R.; Alves, N.; Silva, N.A.; Gasik, M.; Bartolomeu, F.; Miranda, G.
In this study, Selective Laser Melting (SLM) was used to produce mono-material Ti64Al4V- and NiTi-cubic cellular structures with an open-cell size and wall thickness of 500 μm and 100 μm, respectively. Bioactive beta-tricalcium phosphate (βTCP) and polymer poly-ether-ether ketone (PEEK) were used to fill the produced structures open-cells, thus creating multi-material components. These structures were characterized in vitro in terms of cell viability, adhesion, differentiation and mineralization. Also, bio-tribological experiments were performed against bovine plate to mimic the moment of implant insertion. Results revealed that metabolic activity and mineralization were improved on SLM mono-material groups, when compared to the control group. All cell metrics were improved with the addition of PEEK, conversely to βTCP where no significant differences were found. These results suggest that the proposed solutions can be used to improve implants performance.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

3599-PPCDT

Número da atribuição

PTDC/EME-EME/1442/2020

ID