Loading...
Research Project
Center for Innovative Biomedicine and Biotechnology - Associate Laboratory
Funder
Authors
Publications
Sustainable starch-based edible films with agrifood residues as potential carriers for the probiotic Lactobacillus rhamnosus
Publication . Coimbra, Patrícia; Alarico, Susana; Empadinhas, Nuno; Braga, Mara E.M.; Gaspar, Marisa C.
Edible films are promising carriers for probiotics and can be composed by agrifood residues, which are usually rich in polymers and bioactive compounds. In this work, starch-based films were enriched with three types of agrifood residues (quince, potato and orange peels) and the incorporation of the probiotic Lactobacillus rhamnosus was studied, as well as the addition of inulin as a protective prebiotic. The resulting films were characterized in terms of mechanical properties, physicochemical properties, lactobacilli viability and microbiological properties. The mechanical properties of the films generally decreased with the introduction of L. rhamnosus, although this was highly dependent on the film composition. All films exhibited water vapor permeabilities in the typical range of starch-based films and were not greatly affected by the inclusion of probiotics. The loss of probiotic viability during films production was strongly related to the pH of the film-forming solutions. Films with agrifood residues had a slower loss of probiotic viability during storage, when compared to plain starch films, which may be explained by the presence of antioxidant compounds. Inulin was expected to improve viability, but this was not observed. Microbiological analysis showed that agrifood residues powders contained natural contaminant bacteria that were partially eliminated during film formation. Moreover, none of the target foodborne pathogens were detected in the analyzed samples. Overall, the results suggest that edible films containing agrifood residues can be a promising material for the delivery of probiotics and/or as primary packaging for some food products.
Restoring neuropetide Y levels in the hypothalamus ameliorates premature aging phenotype in mice
Publication . Ferreira-Marques, Marisa; Carmo Silva, Sara; Pereira, Joana; Botelho, Mariana; Nóbrega, Clévio; López‐Otín, Carlos; Almeida, Luís Pereira de; Aveleira, Célia A.; Cavadas, Cláudia
The hypothalamus has been recognized as a regulator of whole-body aging. Neuropeptide Y (NPY), highly abundant in the central nervous system and produced by the hypothalamus, enhances autophagy in this brain region and mediates autophagy triggered by caloric restriction, suggesting a potential role as a caloric restriction mimetic and an aging regulator. Considering that hypothalamic NPY levels decline during aging, we investigated if reestablishment of NPY levels mitigate aging phenotype, using a mouse model of premature aging – Zmpste24−/− mouse. The results show that reestablishing hypothalamic NPY levels delayed aging-associated features, including lipodystrophy, alopecia, and memory. Moreover, these results suggest that strategies that promote maintenance of hypothalamic NPY levels might be relevant to counteract aging progression and age-related deteriorations.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
LA/P/0058/2020
