Repository logo
 
Loading...
Project Logo
Research Project

CO-ELECTROSPINNING DE NANOFIBRAS DE PCL MODIFICADO E HIDROGEL CONTENDO CÉLULAS ENCAPSULADAS PARA REGENERAÇÃO DA PELE

Authors

Publications

Biomechanical performance of hybrid electrospun structures for skin regeneration
Publication . Dias, J.R.; Baptista-Silva, S.; Sousa, A.; Oliveira, A. L.; Bártolo, P. J.; Granja, P. L.
Wound dressings made by electrospun nanofibers have been demonstrating great potential to regenerate skin tissue as compared to the conventional membrane products available in the market. Until today most of the developed dressings have only demonstrated the capability to regenerate the dermis or epidermis. In this study we propose new hybrid electrospun meshes combining polycaprolactone and gelatin. Several approaches, multilayer, coating and blend were stablished to investigate the most appropriate hybrid structure with potential to promote skin regeneration in its full thickness. The structures were evaluated in terms of physico-chemical properties (porosity, water vapor permeability, contact angle and swelling degree) and according to its mechanical and biological performance. Multilayer and blend structures demonstrated to fit most of native skin requirements. However, looking to all the performed characterization we considered multilayer as the most promising hybrid structures, due its high porosity which contributed to an ideal water vapor permeability rate and good mechanical and biological properties. Based on this multilayer structure is a promisor wound dressing.
In situ crosslinked electrospun gelatin nanofibers for skin regeneration
Publication . Dias, J. R.; Baptista-Silva, S.; Oliveira, C. M. T. de; Sousa, A.; Oliveira, A. L.; Bártolo, P. J.; Granja, P. L.
Due to its intrinsic similarity to the extracellular matrix, gelatin electrospun nanofibrous meshes are promising scaffold structures for wound dressings and tissue engineering applications. However, gelatin is water soluble and presents poor mechanical properties, which generally constitute relevant limitations to its applicability. In this work, gelatin was in situ crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) at different concentrations (2, 4 and 6 wt%) and incubation time-points (24, 48 and 72 h) at 37 °C. The physico-chemical and biological properties of BDDGE-crosslinked electrospun gelatin meshes were investigated. Results show that by changing the BDDGE concentration it is possible to produce nanofibers crosslinked in situ with well-defined morphology and modulate fiber size and mechanical properties. Crosslinked gelatin meshes show no toxicity towards fibroblasts, stimulating their adhesion, proliferation and synthesis of new extracellular matrix, thereby indicating the potential of this strategy for skin tissue engineering.
Advances in electrospun skin substitutes
Publication . J.R. Dias; Granja, P.L.; Bártolo, P.J.
In recent years, nanotechnology has received much attention in regenerative medicine, partly owing to the production of nanoscale structures that mimic the collagen fibrils of the native extracellular matrix. Electrospinning is a widely used technique to produce micro-nanofibers due its versatility, low cost and easy use that has been assuming an increasingly prominent position in the tissue engineering field. Electrospun systems have been especially investigated for wound dressings in skin regeneration given the intrinsic suitability of fibrous structures for that purpose. Several efforts have been made to combine distinct design strategies, synthetic and/or natural materials, fiber orientations and incorporation of substances (e.g. drugs, peptides, growth factors or other biomolecules) to develop an optimized electrospun wound dressing mimicking the native skin. This paper presents a comprehensive review on current and advanced electrospinning strategies for skin regeneration. Recent advances have been mainly focused on the materials used rather than on sophisticated fabrication strategies to generate biomimetic and complex constructs that resemble the mechanical and structural properties of the skin. The technological limitations of conventional strategies, such as random, aligned and core-shell technologies, and their poor mimicking of the native tissue are discussed. Advanced strategies, such as hybrid structures, cell and in situ electrospinning, are highlighted in the way they may contribute to circumvent the limitations of conventional strategies, through the combination of different technologies and approaches. The main research challenges and future trends of electrospinning for skin regeneration are discussed in the light of in vitro but mainly in vivo evidence.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

FARH

Funding Award Number

SFRH/BD/91104/2012

ID