Repository logo
 
Loading...
Project Logo
Research Project

Platform for the biosynthesis and purification of HPV-16 E6/E7mutant DNA vaccine for cervical cancer treatment or prevention

Authors

Publications

Purification of supercoiled p53-encoding plasmid using an arginine-modified macroporous support
Publication . Valente, J.F.A.; Sousa, A.; Azevedo, G.A.; Queiroz, J.A.; Sousa, F.
p53 is a tumour suppressor gene that has been explored for cancer gene therapy as a possible alter- native to the common treatments. The use of plasmid DNA (pDNA) to carry the therapeutic gene has been considered, but it is requisite to preserve its supercoiled (sc) structure, for eliciting a more effective gene expression and therapeutic action. The purification of the sc pDNA using amino acids-based affinity chromatography has been successfully applied, exploring different amino acids and supports. From these studies, it stood out the selectivity of arginine for the recognition of sc pDNA. However, some limitation on the binding capacity was found in the arginine-agarose support, and in the case of monoliths, some fouling and clogging can limit sequential runs. By using macroporous support modified with arginine it was expected to take advantage of the selectivity of the ligand combined with the flow properties and binding capacity offered by the support. The arginine-modified macroporous support was characterized by SEM, EDX and FTIR also to verify the correct immobilization of arginine, and then used for pDNA pu- rification. The support showed to be effective on the sc p53-pDNA isolation, and the robustness was also achieved by accomplishing the purification of plasmids with different sizes, only by slightly adjusting the experimental conditions. Regarding the dynamic binding capacity of the arginine-modified macrop- orous support, it was achieved an improvement of more than 50% in the pDNA binding capacity when compared with their homologous arginine-agarose commercial matrix, suggesting potential economic fea- sibility in case of scale-up.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BPD/102716/2014

ID