Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A Computer Simulation of the Nitinol Thermal Expansion under Fast Varying Working ConditionsPublication . Ferreira, P. Castelo; Pascoal-Faria, P.; Carreira, P.; Alves, N.We discuss the setup of a simulation on ANSYS to predict the thermal expansion of parts made of Nitinol. A simulation is justified for working conditions in which the part heating is not ho-mogeneous originating a temperature gradient across the part section such that an analytical estimate for the part expansion cannot be calculated. We apply the simulation to the topological optimization of a square section geometry and a bullet geometry for water assisted injection molding. For the topo-logical optimization we consider as parameter the wall thickness and consider both the cases of fast varying temperature and fast varying temperature and pressure.
- Electrical Stimulation Optimization in Bioreactors for Tissue Engineering ApplicationsPublication . Pascoal-Faria, Paula; Ferreira, Pedro Castelo; Datta, Abhishek; Amado, Sandra; Moura, Carla; Alves, NunoWe review here the current research status on bioreactors for tissue engineering with cell electrical stimulation. Depending on the cell types, electrical stimulation has distinct objectives: 1) being employed both to mimic and enhance endogenous electricity measured in the natural regeneration of living organisms and 2) to mimic strain working conditions for contractible tissues (for instance muscle and cardiac tissues). Understanding the distinct parameters involved in electrical stimulation is crucial to optimize its application. The results presented in the literature and reviewed here reveal that the application of electrical stimulation can be essential for tissue engineering applications.