Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Tailoring Bioengineered Scaffolds for Regenerative MedicinePublication . Amado, Sandra; Morouço, Pedro; Pascoal-Faria, Paula; Alves, NunoThe vision to unravel and develop biological healing mechanisms based on evolving molecular and cellular technologies has led to a worldwide scientific endeavor to establish regenerative medicine. This is a multidisciplinary field that involves basic and preclinical research and development on the repair, replacement, and regrowth or regeneration of cells, tissues, or organs in both diseases (congenital or acquired) and traumas. A total of over 63,000 patients were officially placed on organs’ waiting lists on 31 December 2013 in the European Union (European Commission, 2014). Tissue engineering and regen erative medicine have emerged as promising fields to achieve proper solutions for these concerns. However, we are far from having patient-specific tissue engineering scaffolds that mimic the native tissue regarding both structure and function. The proposed chapter is a qualitative review over the biomaterials, processes, and scaffold designs for tailored bioprinting. Relevant literature on bioengineered scaffolds for regenerative medicine will be updated. It is well known that mechanical properties play significant effects on bio logic behavior which highlight the importance of an extensively discussion on tailoring biomechanical properties for bioengineered scaffolds. The following topics will be dis cussed: scaffold design, biomaterials and scaffolds bioactivity, biofabrication processes, scaffolds biodegradability, and cell viability. Moreover, new insights will be pointed out.
- Biomechanical Outcomes Related with Gait in Children with Cerebral Palsy Using Ankle-Foot Orthotic - A Systematic ReviewPublication . Gordo, Jessica Jorge; Pascoal-Faria, Paula; Mateus, Artur; Morouço, Pedro; Schiriati, Verónica; Sandra, AmadoGait in children with cerebral palsy (CP) is often affected by motor impairments which limit the patient's ability to walk. To improve gait and reduce walking limitations, children with CP need to use ankle foot orthoses. An orthosis is an externally applied device that is designed and fitted to the body to achieve one or more of the following goals: a) Control biomechanical alignment. b) Correct or accommodate deformity, and 3) Protect and support an injury. This systematic review aims to describe research evidence supporting the use of ankle-foot orthoses to improve gait biomechanical outcomes among individuals with CP. Literature search was pursued from PubMed database. Studies were included if (1) they evaluated an outcome measure related with gait using ankle-foot orthotic (AFO) in children (2) considered children with a diagnosis of CP and have a (3) GMFCS classification of I, II or III. Papers were excluded if they evaluated (1) other population besides CP, (2) the use of orthoses other than AFOs and (3) gait analysis procedure was not presented. All the included studies have analyzed spatiotemporal parameters, the step length (m), stride length (m) and cadence (steps/minute) were the most frequently reported. Our findings showed that several studies have investigated the effects of AFOs, all of which have reported positive influences on at least one gait parameter, as well as positive changes in joint kinematics and kinetic in children with CP.
- Aerodynamics of a wheelchair sprinter racing at the 100m world record pace by CFDPublication . Forte, Pedro; Marinho, Daniel A.; Morais, Jorge E.; Morouço, Pedro; Pascoal-Faria, Paula; Barbosa, Tiago M.The aim of this study was to analyze aerodynamics in a racing position of a wheelchair-racing sprinter, at the world record speed. The athlete and wheelchair were scanned at the beginning of the propulsive phase position (hands near the handrims at 12h) for the 3D model acquisition. Numerical simulation was run on Fluent, having as output the pressure, viscosity and total drag force, and respective coefficients of drag at the world record speed in T-52 category. Total drag was 7.56N and coefficient of drag was 1.65. This work helped on getting a deeper insight about the aerodynamic profile of a wheelchair-racing athlete, at a 100m world record speed.