Unidade de Investigação - CIIC - Computer Science and Communication Research Centre
Permanent URI for this community
Browse
Browsing Unidade de Investigação - CIIC - Computer Science and Communication Research Centre by Subject "Additive manufacturing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evaluation of the structural strength of anisotropic PLA components manufactured by 3D printingPublication . Ramalho, Armando; Freitas, Dino; Amorim Almeida, HenriquePredicting the mechanical strength of components manufactured by additive processes is a challenging task that is difficulted by the complexity of the geometries fabricated by these processes, along with the anisotropy enhanced by the layer-by-layer manufacturing method and the difficulty in quickly obtaining the elastic and strength properties of the materials, which are strongly influenced by the manufacturing parameters. The use of 3D CAD models in the design phase of components manufactured by 3D printing facilitates the use of the finite element method in assessing their strength and simulating their in-service behavior. However, the finite element analysis of 3D printed parts using anisotropic material behaviour are rare and restricted to simple geometries. To deal with the anisotropy of materials, intense research has been carried out for the last decades in the field of evaluating the mechanical strength of composite materials, introducing several specific failure criteria. In this article, the in-service behaviour of PLA components manufactured by 3D printing is simulated, applying criteria usually used in the study of composite materials to evaluate their mechanical strength. The simulation through the finite element method was developed on the Hexagon Marc/Mentat software, using the Maximum Stress and Hoffman failure criteria.
- Structural optimisation for medical implants through additive manufacturingPublication . Al-Tamimi, Abdulsalam Abdulaziz; Almeida, Henrique; Bártolo, PauloAdvanced manufacturing techniques are being explored to fabricate degradable and non-degradable, porous or non-porous implants for medical applications. These implants have been designed using standard computer-aided design (CAD) and computer-aided engineering (CAE) tools and produced in a multitude of materials. The recent use of optimisation tech niques, mainly topology optimisation, allows the development of additive manufactured medical devices with improved performance. This review discusses the combined use of optimisation techniques and additive manufacturing to produce biocompatible and biodegradable scafolds for tissue engineering with improved mechanical and permeability properties; metallic lattice structures with reduced weight and minimal stress shielding efect; and lightweight personalised orthopae dic implants. Three optimisation routes are considered: topology optimisation; triply periodic minimal surfaces that can be manipulated by means of the equations parameters to optimise the overall performance; and the use of repetitive structures that are optimised as unit cells under certain conditions to compose a bulk object. Major limitations and research challenges are highlighted and discussed.