Browsing by Author "Pereira, Jorge"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Classification of reticular pattern and streaks in dermoscopic images based on texture analysisPublication . Machado, Marlene; Pereira, Jorge; Fonseca-Pinto, RuiThe early detection of melanoma is one of the greatest challenges in clinical practice of dermatology, and the reticular pattern is one of the most important dermoscopic structures to improve melanocytic lesion diagnosis. A texture-based approach is developed for the automatic detection of reticular patterns, whose output will assist clinical decision-making. Feature selection was based on the use of two algorithms by means of the classical graylevel co-occurrence matrix and Laws energy masks optimized on a set of 104 dermoscopy images. The AdaBoost (adaptive boosting) approach to machine learning was used within this strategy. Results suggest superiority of LEM for reticular pattern detection in dermoscopic images, achieving a sensitivity of 90.16% and a specificity of 86.67%. The use of automatic classification in dermoscopy to support clinicians is a strong tool to assist diagnosis; however, the use of automatic classification as a complementary tool in clinical routine requires algorithms with high levels of sensitivity and specificity. The results presented in this work will contribute to achieving this goal.
- On the geometric modulation of skin lesion growth: a mathematical model for melanomaPublication . Mendes, Ana Isabel; Nogueira, Conceição; Pereira, Jorge; Fonseca-Pinto, RuiIntroduction: Early detection of suspicious skin lesions is critical to prevent skin malignancies, particularly the melanoma, which is the most dangerous form of human skin cancer. In the last decade, image processing techniques have been an increasingly important tool for early detection and mathematical models play a relevant role in mapping the progression of lesions. Methods: This work presents an algorithm to describe the evolution of the border of the skin lesion based on two main measurable markers: the symmetry and the geometric growth path of the lesion. The proposed methodology involves two dermoscopic images of the same melanocytic lesion obtained at different moments in time. By applying a mathematical model based on planar linear transformations, measurable parameters related to symmetry and growth are extracted. Results: With this information one may compare the actual evolution in the lesion with the outcomes from the geometric model. First, this method was tested on predefined images whose growth was controlled and the symmetry known which were used for validation. Then the methodology was tested in real dermoscopic melanoma images in which the parameters of the mathematical model revealed symmetry and growth rates consistent with a typical melanoma behavior. Conclusions: The method developed proved to show very accurate information about the target growth markers (variation on the growth along the border, the deformation and the symmetry of the lesion trough the time). All the results, validated by the expected phantom outputs, were similar to the ones on the real images.
- Reticular pattern detection in dermoscopy: an approach using Curvelet TransformPublication . Machado, Marlene; Pereira, Jorge; Fonseca-Pinto, RuiIntroduction: Dermoscopy is a non-invasive in vivo imaging technique, used in dermatology in feature identification, among pigmented melanocytic neoplasms, from suspicious skin lesions. Often, in the skin exam is possible to ascertain markers, whose identification and proper characterization is difficult, even when it is used a magnifying lens and a source of light. Dermoscopic images are thus a challenging source of a wide range of digital features, frequently with clinical correlation. Among these markers, one of particular interest to diagnosis in skin evaluation is the reticular pattern. Methods: This paper presents a novel approach (avoiding pre-processing, e.g. segmentation and filtering) for reticular pattern detection in dermoscopic images, using texture spectral analysis. The proposed methodology involves a Curvelet Transform procedure to identify features. Results: Feature extraction is applied to identify a set of discriminant characteristics in the reticular pattern, and it is also employed in the automatic classification task. The results obtained are encouraging, presenting Sensitivity and Specificity of 82.35% and 76.79%, respectively. Conclusions: These results highlight the use of automatic classification, in the context of artificial intelligence, within a computer-aided diagnosis strategy, as a strong tool to help the human decision making task in clinical practice. Moreover, the results were obtained using images from three different sources, without previous lesion segmentation, achieving to a rapid, robust and low complexity methodology. These properties boost the presented approach to be easily used in clinical practice as an aid to the diagnostic process.