Browsing by Author "Miranda, Pedro Cavaleiro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- How to correctly estimate the electric field in capacitively coupled systems for tissue engineering: a comparative studyPublication . Meneses, João; Fernandes, Sofia; Alves, Nuno; Pascoal-Faria, Paula; Miranda, Pedro CavaleiroCapacitively Coupled (CCoupled) electric fields are used to stimulate cell cultures in Tissue Engineering. Knowing the electric field (E-Field) magnitude in the culture medium is fundamental to establish a relationship between stimulus strength and cellular effects. We analysed eight CCoupled studies and sought to corroborate the reported estimates of the E-Field in the culture medium. First, we reviewed the basic physics underlying CCoupled stimulation and delineated three approaches to estimate the E-field. Using these approaches, we found that the reported values were overestimated in five studies, four of which were based on incorrect assumptions. In all studies, insufficient information was provided to reproduce the setup exactly. Creating electrical models of the experimental setup should improve the accuracy of the E-field estimates and enhance reproducibility. For this purpose, we developed a free open-source tool, the E-field Calculator for CCoupled systems, which is available for download from an internet hosting platform.
- What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?Publication . Miranda, Pedro Cavaleiro; Faria, Paula; Hallett, Mark; Pascoal-Faria, PaulaObjective: To examine the relationship between the ratio of injected current to electrode area (I/A) and the current density at a fixed target point in the brain under the electrode during transcranial direct current stimulation (tDCS). Methods: Numerical methods were used to calculate the current density distribution in a standard spherical head model as well as in a homogeneous cylindrical conductor. Results: The calculations using the cylindrical model showed that, for the same I/A ratio, the current density at a fixed depth under the electrode was lower for the smaller of the two electrodes. Using the spherical model, the current density at a fixed target point in the brain under the electrode was found to be a non-linear function of the I/A ratio. For smaller electrodes, more current than predicted by the I/A ratio was required to achieve a predetermined current density in the brain. Conclusions: A non-linear relationship exists between the injected current, the electrode area and the current density at a fixed target point in the brain, which can be described in terms of a montage-specific I-A curve. Significance: I-A curves calculated using realistic head models or obtained experimentally should be used when adjusting the current for different electrode sizes or when comparing the effect of different current-electrode area combinations.