Browsing by Author "Gibson, I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Ask not what additive manufacturing can do for youPublication . Gibson, I.The paraphrase of John F Kennedy’s famous words is for 2 purposes. Firstly it is to acknowledge that there are some people who have considered that it is a major part of their life’s work to promote Additive Manufacturing (AM) technology as primarily a selfless act. AM comprises an outstanding range of technology that should be brought to public attention as a true revolution in how we design and manufacture products. The second purpose is to show that technology development is only one part of this promotion process and that there are other ways in which we can get involved. This paper describes the author’s journey over the (approximately) 20 years since he was introduced to what was then called Rapid Prototyping (RP). It is not a catalogue of research and development projects but rather a list of activities that he has been involved in to help promote and support AM technology over these years. It will describe the conferences, activities, associations and publications that have been created to allow academics and professionals to describe and discuss their work amongst themselves and to the larger society.
- Layer manufacturing of magnesium and its alloy structures for future applicationsPublication . Ng, C. C.; Savalani, M. M.; Man, H. C.; Gibson, I.This research aims to develop a rapid layer manufacturing technique to provide magnesium bone substitute for future applications in the medical fields. Selective laser melting (SLM), which is a laser based additive layer manufacturing technique and capable of producing required geometries directly from CAD data, is selected to build magnesium structures. Magnesium has several intrinsic properties including its excellent biocompat-ibility, biodegradable, bioresorbabiltity and proper mechanical properties which would make it suitable for orthopaedic applications. This paper will discuss the status quo of this material and its future implications. A miniature SLM system was built to achieve better control of the atmospheric conditions in which the magnesium would melt. The results revealed that the SLM is a promising technique to fabricate magnesium substitute for various orthopaedic applications.
