Browsing by Author "Gaspar, F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Cork Plastic Composite Optimization for 3D Printing ApplicationsPublication . Brites, F.; Malça, C.; Gaspar, F.; Horta, J. F.; Franco, M. C.; Biscaia, S.; Mateus, A.Among natural fillers, cork has been acknowledged as a suitable alternative of other cellular materials that are widely employed in engineering applications due to their low conductivity to heat, noise and vibration, high abrasion resistance and flexibility, high compressibility ratio, among other characteristics [1]. The eco-friendly features of natural fillers based composites make them a very promising and sustainable solution to large markets mainly if additive manufacturing technologies, such as 3D printing, are used [2]. Through 3D printers, engineers, designers and architects can create design and decor products with a free complexity of geometry. In this research work, plastic matrices of HDPE – obtained from conventional suppliers – were reinforced with different ratios of cork waste and natural cork powders – obtained from cork transformation industries – to find the optimum mixture for 3D printing. The effects of cork powders content in the plastic on the morphological, physical and mechanical properties of the composites were investigated through the density, optical microscopy, wettability, thermal analysis and tensile testing. Cork-based composites were processed by an extrusion system, and the mixture of polymer, adhesive and fillers is discussed. The results show that the addition of pure cork and cork waste can be processed with polymers such as HDPE, having adequate physical and mechanical properties.
- The Use of Polypropylene and High-Density Polyethylene on Cork Plastic Composites for Large Scale 3D PrintingPublication . Brites, Fernando; Malça, Cândida; Gaspar, F.; Horta, J. F.; Franco, M. C.; Biscaia, S.; Mateus, A.This work focuses on studying the possibility of 3D printing of composite materials composed by cork and a polymer matrix (CPC). Initially the cork was mixed with two types of polymers (HDPE and PP) in different proportions and later processed using extrusion and injection. The composites were tested to study the physical, chemical and mechanical properties. The material was then tested on a large-scale 3D printer to study its feasibility and the ability to produce new products through 3D printing. Attention was focused on the use of pure cork, varying the concentration of cork and coupling agent in thermoplastic matrix composites of PP and HDPE. It was demonstrated that the increase of 5wt.% of coupling agent in the two types of polymers significantly improved the mechanical properties and adhesion between the phases but the increase in cork concentration decreased mechanical properties and crystallinity. The CPCs with PP showed to have better mechanical properties, better aesthetic and internal structural quality, and easier processability than those with HDPE matrix. Nevertheless, the HDPE CPCs showed a high degree of crystallization. Concerning 3D printing, it was demonstrated the possibility of making new products based on natural cork fibers, showing promising results, although additional research is still needed to optimize the process.
