Browsing by Author "Duarte, Luis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- A Software-Defined Radio for Future Wireless Communication Systems at 60 GHzPublication . Gomes, Rodolfo; Duarte, Luis; Ribeiro, Carlos; Caldeirinha, RafaelThis paper reports on a complete end-to-end 5G mmWave testbed fully reconfigurable based on a FPGA architecture. The proposed system is composed of a baseband/low-IF processing unit, and a mmWave RF front-end at both TX/RX ends. In particular, the baseband unit design is based on a typical agile digital IF architecture, enabling on-the-fly modulations up to 256-QAM. The real-time 5G mmWave testbed, herein presented, adopts OFDM as the transmission scheme waveform, which was assessed OTA by considering the key performance indicators, namely EVM and BER. A detailed overview of system architecture is addressed together with the hardware considerations taken into account for the mmWave testbed development. Following this, it is demonstrated that the proposed testbed enables real-time multi-stream transmissions of UHD video content captured by nine individual cameras, which is in fact one of the killing applications for 5G.
- Disruptive Future of Radar Based on All-Digital PN Signal ProcessingPublication . Ribeiro, Carlos; Ferreira Gil, João; Caldeirinha, Rafael; Reis, Joao R.; Sardo, Andre; Duarte, Luis; Leonor, NunoThis paper presents the first results on the design and implementation of a real-time and high resolution monostatic radar at 24 GHz, based on the sliding correlation of pseudonoise (PN) sequences. The real-time radar, with a high time resolution better than 4ns, is used for moving target identification (MTI) in the presence of highly dense clutter, under harsh environments and severe weather conditions (fog, snow and fire smoke or plume). A radar signal processing based on alldigital PN sequences is proposed, which represents a quantum leap in radar future front-end architecture. Results obtained in a controlled environment, inside an anechoic chamber, are presented and a benchmark with a commercially-of-the-shelf solution is presented. © 2019 IEEE.
- DLL architecture for OFDM based VLC transceivers in FPGAPublication . Duarte, Luis; Rodrigues, Luis; Alves, Luis N.; Ribeiro, Carlos; Figueiredo, MónicaThis paper addresses the problem of achieving high bandwidth in a DLL design for OFDM based VLC broadcast systems. It describes the implementation of efficient Data Link Layer (DLL) and Forward Error Correction (FEC) modules in a Xilinx FPGA. The proposed DLL aims at furnishing the adequate means to fragment and route both high data-rate (HDR) and moderate data-rate (MDR) service requests while maintaining a continuous transmission flow. The FEC modules aims at providing sufficient error correction capabilities with reasonable computation overheads. Another goal was to develop these modules under a globally asynchronous locally synchronous paradigm, ensuring high modularity and performance.
- STDCC radar at 24 GHz: first measurement trialsPublication . Ferreira Sardo, Andre; Reis, João R.; Duarte, Luis; Leonor, Nuno; Ribeiro, Carlos; Caldeirinha, Rafael F. S.This paper presents the first measurement trials for performance assessment of a real-time and high resolution monostatic radar operating at 24 GHz. The proposed real-time radar, which operates based on the sliding correlation of pseudo-noise (PN) sequences, provides a high time resolution better than 4 ns, useful for moving target identification (MTI) in the presence of highly dense clutter, under harsh environments and severe weather conditions (fog, snow and fire smoke or plume). The STDCC radar target detection capability is demonstrated in this paper, by measuring and identifying the radar data for 4 distinct scenarios, composed of multiple targets (up to 8), inside an anechoic chamber, demonstrating the potential of the proposed radar architecture.